Bihar Engineering University, Patna

B.Tech. 5th Semester Examination, 2023

Course: B. Tech. Code: 105503

Subject: Formal Language and Automata Theory

Time: 03 Hours

Full Marks: 70

Instructions:-

(i) The marks are indicated in the right-hand margin.

- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- (v) Assume suitable missing data

Choose the correct answer of the following (Any seven question only):

 $[2 \times 7 = 14]$

- (a) Let S be an infinite countable set. Then its power set will be
 - (i) countable

- (ii) not countable
- (iii) can't be determined
- (iv) None of the above.
- Assuming $P \neq NP$, which of the following is true? (b)
 - (i) NP-complete = NP
- (ii) NP-complete \cap P = ϕ
- (iii) NP-hard = NP
- (iv) P = NP-complete
- Which of the following pairs of regular expressions is not equivalent?
 - (i) $1(01)^*$ and $(10)^*$ 1
- (ii) $x(xx)^*$ and $(xx)^*x$
- (iii) (ab)* and a*b*
- (iv) x+ and x*x+
- (d) The logic of Pumping Lemma is a god example of
 - (i) the pigeon-hole principle
- (ii) the divide and conquer technique

(iii) recursion

- (iv) iteration
- A PDM behaves like a TM when the number of auxiliary memory it has is (e)
 - (i) 0

(ii) 1 or more

(ii) 2 or more

- (iv) None of the above
- The recognizing capability of DPDA and NPDA is (f)
 - (i) different

- (ii) same
- (iii) can't be decided
- (iv) None of the above
- If L is a recursive language, then will its complement be also recursive? It is a (g)
 - (i) decidable problem
- (ii) un-decidable problem
- (iii) can't be said
- (iv) None of the above
- If a language and its complement both are recursively enumerable then the language is (h)
 - (i) regular

- (ii) context-free
- (iii) context-sensitive
- (iv) recursive
- CFG is not closed under (i)
 - (i) union

- (ii) kleene star (iv) product
- (iii) complementation
- The intersection of a context-free language and a regular language is (j) (i) need not be regular
 - (ii) need not be context-free
 - (iii) is always context-free
- (iv) None of the above
- Write a Regular Exp. for $L=\{w \in \{0,1\}^*: w \text{ has no pair of consecutive zeros}\}$. 0.2 (a)

[7] [7]

Construct a DFA equivalent to the NFA given by $M = (\{p,q,r,s\}, \{0,1\}, \delta, p, \{s\}),$ (b) where δ is defined in the following table.

	0	1-2
p	{p,q}	{p}
q	{r}	{r}
r	{s}	•
S	{s}	{s}

- Q.3 (a) Construct a DFA which will accept the set consisting of all strings with no more than three a's, where the input alphabet is $\Sigma = \{a,b\}$.
 - (b) Minimize the given DFA. [7]

[7]

- Q.4 (a) If L_1 and L_2 are regular languages then prove that there exists an algorithm to determine whether or not $L_1 = L_2$.
 - (b) State the pumping lemma theorem for regular sets. With the help of pumping lemma, prove that L= $\{w \in \Sigma^*: n_a(w) < n_b(w)\}$ is not regular.
- Q.5 (a) Convert the given CFG into GNF form: -

$$S \rightarrow XB \mid AA$$

 $A \rightarrow a \mid SA$

$$B \rightarrow b$$

$$X \rightarrow a$$

- (b) Design a PDA for the language L={ WW^R : W is in $(0+1)^*$ }. [7]
- Q.6 (a) Write the closure properties of regular languages and context free languages. [7]
 - (b) Define LBA. Find LBA for the language $L=\{a^n b^n c^n : n \ge 1\}$. [7]
- Q.7 (a) What do you mean by, "Turing Machines as Transducers"? Design a Turing machine which will compute addition of two positive integers.
 - (b) How will you check that a given CFG is ambiguous or not? Is it decidable or undecidable problem? Give the proof to support your answer.
- **Q.8** (a) Design a Turing Machine to accept the language $L=\{0^n1^n: n>=1\}$. [7]
 - (b) Define Recursive and Recursive Enumerable languages. Show the relation among them with the help of Venn- diagram. [7]
- Q.9 Write short notes on any two of the following: $[7\times2=14]$
 - (a) Post correspondence problem
 - (b) Halting Problem
 - (c) Church-Turing Thesis
 - (d) Chomsky Normal Form