Bihar Engineering University, Patna End Semester Examination – 2023

Semester-IV

Course: B.Tech. Code: 100404

Subject: Discrete Mathematics

Time: 03 Hours Full Marks: 70

Instructions:-

(i) The marks are indicated in the right-hand margin.

(ii) There are NINE questions in this paper.	
(iii) Attempt FIVE questions in all,	
(iv) Question No. 1 is compulsory.	
Q.1 Write the answer of the following (Any seven question only):	$[2 \times 7 = 14]$
a) Let A be the set odd positive integers less than 10. Then cardinality of A, $ A $ is $-(i)$ 5	(1)
(ii) 9	0.1
(iii)6	
(iv) 4	
b) If m is the number of objects (pigeons) and n is the number of boxes (pigeonhole both one – to – one and onto if	
	s), then the function
(i) $m < n$ (ii) $m = n$ (iii) $m > n$ (iv) none of these	
c) If $A \times B = B \times A$, (Where A and B are general matrices) then	
(1) $A - U$ (11) $A = B'$ (111) $A = A$ (111) $A = A$	
d) A partial ordered relation is transitive reflexive and	
(1) Anti symmetric (11) bi symmetric (111) anti reflevive (112)	
of the following is true	
1. B is a finite but complemented lattice	
11. B is a finite, complemented and distributive lattice	
III. B is a finite, Distributive but not complemented lattice	
D is not distributive lattice	
4 is regreatly equivalent to	
a) $\sim q \rightarrow p$ b) $\sim P \rightarrow q$ c) $\sim P \wedge q$.d) $\sim p \vee q$	
g) if $f(x) = cosx$ and $g(x) = x^3$ then $(f_0g)(x)$ is	
(i) $(\cos \cos 3)$ (ii) $(\cos 3)$	
(i) $(\cos x)^3$ (ii) $\cos 3x$ (iii) $x^{(\cos x)^3}$ (iv) $\cos x^3$	
(i) (a)	A are
i) Which of the following pair is not congruent modulo 7?	
(i) 10, 24	
(ii) 25, 56	
(iii) -31, -15	
(iv) -64, -15	
j) Let $N = \{1,2,3,\}$ be ordered by divisibility, which of the following subset $A(i) (2,6,24)$ (ii) $A(i) (3,5,15)$ (iii) $A(i) (2,0,16)$	
V(1/12, V, 47) (III/13, 3, 13) (IIII/1/ 9 ID) (111) (A 15 30)	
92. 3.1 Let $A = B = \{-1 \le x \le 1\}$ for each of the following functions state where it	
or bijective	is injective, surjective
$(x) = \sin \pi x$	[7]
$\int \int \int \int \int \int \int \int \partial x dx d$	
(b) Let $f(x) = x+2$, $g(x) = x-2$, $h(x) = 3x$ find (i) fog (ii) fogoh	[7]
Q3. (a) find the power set of each of these sets	[7]
(a, b) (ϕ, ϕ)	
b.) Use Cantor's diagonal argument to prove that set F of all functions $f:(0,1) \rightarrow Coordinative than B $	R has larger [7]
Cardinality than [K]	
Q4. Determine if the sets are countable or uncountable	[14]
a.) the set A of all function $g: Z_+ \to Z_+$	
b.) The set B of all functions $f: \mathbb{Z}_+ \to \{0,1\}$	

Prove the following by using the principle of mathematical induction for all n C N:

 $1^3 + 2^3 + 3^3 + \dots + n^3 = (\frac{n(n+1)}{2})^2$

Q6. State and prove Division algorithm theorem well-ordering principle.

[14]

[14]

- Q7. (a) Check the validity of the following argument all integers are rational numbers. Some integers are powers of 5. Therefore, some rational numbers are powers of 5 [7]
 - (b) A grocery store employee is stocking apples. Each apple is a different color. There are 10 apples left in the box and the employee pulls out 2 of them at random. What is the probability that the employee pulls out one pink apple and yellow apple? [7]
- Q8. Let $\Psi : G \to H$ be a homomorphism of groups. Show that if $a \in G$ has order n, then Ψ (a) $\in H$ has order dividing n.
- Q9. Consider the following graph

(a) Does a Hamiltonian path exist? If so describe it. If not say why not.

[7]

Does an Eulerian path exist? If so describe it. If not say why not.

[7]