Bihar Engineering University, Patna B.Tech. 2nd Semester Special Examination, 2024

Course: B.Tech.

Code: 103201

Time: 03 Hours
Full Marks: 70

Subject: Physics (Waves & Optics and Introduction to Quantum Mechanics)

Inst	ructio					
(i)		The marks are indicated in the right-hand margin.				
		e are NINE questions in this paper.				
		npt FIVE questions in all.				
(11)		tion No. 1 is compulsory.		• 53		
Q. 1	Che	oose the correct answer of the following (An	y seven question only):	$[2 \times 7 = 14]$		
	(a)	In an object executing SHM, acceleration (i) Velocity (ii) Amplitude	is proportional to (iii) Displacement	(iv) (Velocity) ²		
	(b)	The ratio of the velocity of light in a med	ium to the velocity of lig	ght in a vacuum is $\frac{4}{5}$. If		
	()	the ray of light is emerging from this medium into the air then the critical angle for this				
		interface of medium and air will be	arum mee me			
		(i) 30^0 (ii) 37^0	(iii) 53°	(iv) 45 ⁰		
	(c)	The resolving power of grating depends or	1			
		(i) Only order of diffraction	***			
		(ii) Only number of rulings per inches				
		(iii) Both order of diffraction and number	of rulings per inches			
		(iv) none of the above				
	(d)	The wave front originated from a line sour	rce is			
		(i) Plane (ii) Cylindrical	(iii) Spherical	(iv) None of these		
	(e)					
		(i) Ruby Laser (ii) He Ne Las				
		(iii) CO ₂ Laser (iv) Nd YAG	Laser			
	(f)	Hamiltonion operator represents				
		(i) Momentum (ii) Position	(iii) Energy	(iv) Probability		
	(g)	The life time of electron in metastable stat				
		(i) 10^{-9} s (ii) 10^{-3} s	(iii) 10 ⁻⁸ s	(iv) 10^{-7} s		
	(h)	Fermi level of an intrinsic semiconductor	is			
		(i) in conduction band				
		(ii) in valence band				
		(iii) in the boundary of valance band and forbidden energy gap				
		(iv) in halfway of valance and conduction band				
(i) A stretched string of length / fixed at both ends can sustain				ry waves of		
		wavelength	,			
		(i) $\frac{n}{2l}$ (ii) $\frac{2l}{n}$ (iii) $\frac{l}{2n}$ (iv) $\frac{l}{n}$		4.5.35		
	(j)	The eigen value of a particle in one dimensi		gm a is		
		(i) $E_n = \frac{n^2 h^2}{8ma^2}$ (ii) $E_n = \frac{n^2 m h^2}{8a^2}$	$(iii) E_n = \frac{mh^2}{8n^2a^2}$	(iv) $E_n = \frac{8a^2mh^2}{n^2}$		

Q.2	Write and solve the differential equation of mechanical forced damped harmonic oscillation.		
Q.3	Explain the transverse waves in a stretched string, Solve the differential equation to get displacement.		
Q.4	Explain the construction and working of Michelson Interferometer. How is it used to determine wavelength of monochromatic light?		
Q.5	Discuss solution of stationary state Schrodinger equation for one dimensional problems of particle in a box.		
Q .6	(a) Explain construction and working of Ruby Laser. Draw its energy diagram.(b) Write down applications of laser in various fields	[10] [4]	
Q .7	Derive time dependent and time independent Schrodinger equation for wave function.		
Q.8	State and prove Bloch's Theorem for a particle under periodic potential	[14]	
Q .9	 Write short notes on any two of the following: (a) Total internal reflection (b) Resolving power of grating (c) Temperature dependence of carrier concentration of a semiconductor (d) Zero point energy of a linear harmonic oscillator. 	[7x2=14]	