Bihar Engineering University, Patna B. Tech. 2nd Semester Special Examination, 2024

Course: B. Tech. Code: 105202

Subject: Mathematics-II (Probability and Statistics)

Time: 03 Hours Full Marks: 70

Instructions:-

The marks are indicated in the right-hand margin.

(ii) There are NINE questions in this paper.

(iii) Attempt FIVE questions in all.

(iv) Question No. 1 is compulsory.

(v) Assume data suitably, if not given.

1. Choose the correct answer of the following (Any seven question only): $[2 \times 7 = 14]$ The mean and variance of the binomial distribution is (i) np, npq (ii) np, np/q (iii) n/p, np/q (iv) None of these (b) For Gamma distribution of a random variable X, which is true? (i) E(X) = Var(X) (ii) $[E(X)]^2 = Var(X)$ (iii) $E(X) = [Var(X)]^2$ (iv) None of these (c)

A fair dice is tossed 7 times. The probability that a 5 or a 6 occurs at least once is

If X is normal with mean 2 and standard deviation 3, then distribution of $Y = \frac{1}{2}X - 1$ is (d) $N\left(0,\frac{9}{4}\right)$ (ii) $N\left(1,\frac{9}{4}\right)$ (iii) $N\left(0,\frac{3}{4}\right)$ (iv) $N\left(1,\frac{3}{4}\right)$

If z is normally distributed with mean 0 and variance 1, then $P(z \ge -1.64)$ is (e) (i) 0.9495 (ii) 0.9275 (iii) 0.9385 (iv) None of these

If X and Y are correlated variates each having Poisson distribution. Then X + Y can be (f) (i) Binomial variate (ii) Poisson variate (iii) Normal variate (iv) None of these

Let A and B be events with $P(A) = \frac{3}{8}$, $P(B) = \frac{5}{8}$ and $P(A \cup B) = \frac{3}{4}$. Then $P(A^C)$ is (g)

Let E be an event for which P(E) > 0, then for any event A (h)

(i) $P(A/E) \ge 0$ (ii) P(A/E) = 0(iii) P(A/E) = 1(iv) None of these

Let X_i be independent and identically distributed (iid) random variable such that each (i) X_i has probability density function $f(x) = \frac{1}{3}e^{-\frac{x_i}{3}}$, x > 0. Then $E(X_i)$ is

(i) λ (iii) n\(\lambda\) (iv) $\frac{\lambda}{n}$ The Probability density function of a continuous random variate is (j)

 $f'(x) = \begin{cases} 0, & x < 2\\ \frac{3+2x}{18}, & 2 \le x \le 4\\ 0, & x > 4 \end{cases}$

Then, probability that x will lie between $2 \le x \le 3$ is

(ii) $\frac{2}{9}$ (i) $\frac{4}{9}$ $(iii)\frac{5}{6}$ $(iv) - \frac{2}{3}$

Q.2 (a) In a hand at whist, what is the chance that 4 Kings are held by a specified player? [4] Prove that if A, B and C are random events in a sample space and if A, B, C are [10] pairwise independent and A is independent of $(B \cup C)$, then A, B and C are mutually independent.

In a small town of 1000 people there are 400 females and 200 colour-blind persons. It is known that ten percent i.e. 40, of the 400 females are colour-blind. Find the	
a) A random variable (r.v.) X takes the values 1, 2, 3,, k , with the probabilities	
$\{(X - J) = J(J) = Q, J = 1, 2, 3, \dots, k\}$	
Find the constant c such that $f(j)$ is a probability mass function.	
Let X be a random variable (r.v.) with p.m.f (probability mass function) given by the	
tonowing table.	
$f: \frac{-2}{f} = \frac{-1}{40} = \frac{0}{40} = \frac{1}{40}$	
Compute $E(X^2)$, $E(X)$ and find $Var(X)$.	
Find the mean and variance of the exponential distribution	
$f(x) = \frac{1}{b}e^{-\frac{x}{b}}$ for $x > 0$, $b > 0$.	
A random variable VI and a language of the value	
2	
Show that the function $f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty$ is a density function.	
Suppose X have the density function.	
$f(x) = \begin{cases} xe^{-x}, & \text{if } x > 0 \end{cases}$	
Find its moment generating function whenever it exists. If X be a binomially distributed random variable with $E(X) = 2$ and $Var(X) = 4/3$. Find	
the distribution of X.	
Suppose (X, Y) has the joint probability density function.	
$f(x,y) = \int 8xy, if 0 < x < y < 1$	
With $E(X) = \frac{8}{15}$, $E(Y) = \frac{4}{5}$. Evaluate the Covariance of X and Y.	
Calculate the co-efficient of correlation and obtain the lines of regression for the	
following data.	
x 1 2 3 4 5 6 7 3 2 y 9 8 10 12 11 13 14 16 15	
x 1 2 3 4 5 14 16 15	
	probability that a randomly chosen person is colour-blind, given that the person is a female. a) A random variable (r.v.) X takes the values 1, 2, 3,, k , with the probabilities $P[X=j]=f(j)=cj$, $j=1,2,3,,k$ Find the constant c such that $f(j)$ is a probability mass function. Let X be a random variable (r.v.) with p.m.f (probability mass function) given by the following table. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Q.8 (a)		By the method of least squares, fit a parabolic equation $y = a + bx + cx^2$ to the					$x + cx^2$ to the	[10]
	follo	owing data.	3	_2	0	3	4	
		$\frac{\lambda}{y}$	18	10	2	2	5	

(b)	Two ladies Deepti and Nancy, were asked to rank lipsticks from 7 known companies.					
	The ranks given by them are as follows					
	Lipsticks companies A B C D E F G					

Lipsticks companies	A	В	C	D	E	F	G
Rank X by Deepti	2	1	4	3	5	7	6
Rank Y by Nancy	1	3	2	4	5	6	7

Find the Spearman's Rank correlation coefficient.

Q.9 (a) A die is thrown 27.	results of the throws are tabulated bel	171
Name and 276 times and	results of the throws are tabulated bei	ow.
Number on the die	1 2 3 4 5	6
Frequency	20 59 5/	59
Test, if the dia:	40 32 29 37	

Test, if the die is unbiased using χ^2 -Test. (Given $\chi^2_{0.05} = 11.07$ at d.f.=5)

The theory predicts the proportion of beans in the four groups G_1 , G_2 , G_3 , G_4 should be in the ratio 9: 3: 3: 1. In an experiment with 1600 beans the numbers in the four groups were 882, 313, 287 and 118. Does the experimental result support the theory?

(Given $\chi^2_{0.05} = 7.815$ at d.f.=3)