Bihar Engineering University, Patna B.Tech. 2nd Semester Special Examination, 2024

Course: B. Tech. Code: 102202

Subject: Mathematics-II (ODE & Complex Variables)

Time: 03 Hours Full Marks: 70

Instructions:-

- The marks are indicated in the right-hand margin.
- There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- (v) Assume data suitably, if not given.

Q. 1. Answer any seven question of the following:

 $[2 \times 7 = 14]$

[7]

- Use change of order of integration to evaluate $\int_{0}^{\infty} e^{y} dxdy$.
- If $A = 2x^2I 3yzJ + xz^2K$ then find $\nabla \cdot A$. (b)
- Find the solution of the differential equation $(x^2 + y^2) dy = xy dx$. (c)
- Write the necessary and sufficient condition for the differential equation Mdx + Ndy = 0 to (d) be Exact.
- (e) Write the Rodrigue's formula for $P_n(x)$.
- (f) Obtain the value of the Wroskian matrix for the differential equation $\frac{d^2y}{dx^2} - y = x$.
- For what value of a, the function $2x 6x^2 + ay^2$ is Harmonic? (g)
- Find the poles of $(z) = \frac{1}{\sin z \cos z}$. (h)
- (i) Write the cross ratio of four points z_1, z_2, z_3, z_4 .
- Define Taylor's series. (j)
- Find the area of the loop of the curve $3ay^2 = x(x-a)^2$. Q.2
 - Evaluate $\int_0^1 \int_0^x \int_0^{x+y} (x+y+z) dz dy dx$. [7]
- [7] Verify Green's theorem for $\int_C (x^2ydx + x^2dy)$ where C is the boundary described counter Q.3 (a) clockwise of triangle with vertices (0,0), (1,0), (0,1).
 - (b) Find the total work done in moving a particle in the force field given by [7] F = 3xyI - 5zJ + 10xK along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t=1 to t=2.
- [7] Q.4 (a) Solve $x \log x \frac{dy}{dx} + y = \log x^2$.
 - [7] (b) Solve p(p + y) = x(x + y).

- Q.5 (a) Use method of variation of parameter to obtain the solution of $\frac{d^2y}{dx^2} + y = tanx$. [7]
 - Solve the Cauchy's linear equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x$. [7]
- Q.6 (a) Express $J_5(x)$ in terms of $J_0(x)$ and $J_1(x)$. (b) Prove that $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$. [7]
- Q.7 (a) Given $v(x, y) = x^4 6x^2y^2 + y^4$ find f(z) = u(x, y) + iv(x, y) such that f(z) is [7]
 - (b) Find the image of the mapping of the region $1 \le x \le 2$ and $2 \le y \le 3$ under the mapping [7] $w = e^{z}$.
- Q.8 (a) Obtain the Laurent series which represent the function $f(z) = \frac{1}{(1+z^2)(z+2)}$ where [7]
 - (i) 1 < |z| < 2 (ii) |z| > 2. (b) Evaluate $\int \frac{e^z}{z^2 + 1} dz$ over the circular path |z| = 2. [7]
- Q.9 Write short on any two of the followings:(a) Froenious method [7x2=14]
 - (b) Singularities of an analytic function
 - (c) Stoke's Theorem and Gauss Divergence theorem