Com Code	rse: B.Tech. :: 100308	Bihar Engi End Seme Sabject: 1	neering Unive ster Examina emester: III Electromagnetic .	Time: 03 Hours Full Marks: 70	
Instru (i) 1 (ii) 7 (iii) A (iii) Q	uctions:- The marks are in There are NINE (ttempt FIVE qu Duestion No. 1 is	idicated in the right-h questions in this pape vestions in all, s compulsory,	and margin. er,		
Q.1	(a) If the corr (i) 2.0a _x / (ii) 2.0 A	<i>rect option of the foll</i> l of the magnetic field V/m ² /m	<i>lowing: (Answer</i> 1 is 2.0a _x A/m ² , tl (ii) 1.0a _x A/ (iv) 1.0a _x A	<i>any seven)</i> ne current density /m ² /m	[2 x 7 = 14]
(b) Poynting (i) rate of (ii) directi (iii) intens (iv) intens 	vector gives the energy flow on of polarization ity of electric field ity of magnetic field			
(c) The freque units (in G (i) <u>6</u>	ncy in rad/sec of a w Hz) is (ii) 60	ave with velocity	y of that of light a	and phase constant of 20
(d)) The examp (i) Oxygen (iii) Hydrog	le of polar type of die gen	electric is (ii) Water (iv) Nitroger	(IV) 0.6	
(e)	Using volur (i) Area of c (iii) Volume	ne integral, which qu cube cof cube	antity can be ca (ii) Area of c (iv) Distance	lculated? cuboid e of vector	
(f)	One end of a and length o the transmiss (i) 0	a lossless transmissio f 1 cm is short circui sion line is. (ii) resistive	on line having the ted. At 3 GHz, t	e characteristic i he input impeda	mpedance of 75 ohm nce at the other end of
(g)	For any scala (i) 1 (i	i) 0 (iii) depends of $(a, \nabla \times a)$	(∇f) is: on 'f' (iv) r	ve (iv) inductive	e
(h)	Stoke's Theor related to its c (i) Volume en (iii) Both (i) a	rem states that every effects over iclosed nd (ii)	vector having i (ii) Surface e (iv) None of (ts effects over a nclosed	closed line can be
(i)	Electric flux e enclosed "this (i) Faraday's [enclosed by a surface is statement of: aw (ii) Lenz's law	e surrounding a (iii) Modified	charge is equal ampere's law	to the amount of charge (iv) Gauss's law

	(j)	Identify the nature of the field, if the divergence is zero and curl is also zero(i) Solenoidal, irrotational(ii) Divergent, rotational(iii) 0, irrotational(iv) Divergent, rotational	
Q.1	2 (a)	Derive dielectric-dieelectric boundary conditions	(m .)
and a	(b)	The electric field intensity in polystyrene $E_p = 2.55$ filling the space between the plates of a parallel plate capacitor is 10 kV/m. The distance between the plates is 1.5 mm. Calculate- (i) The surface charge density of free charge on the plates:	7 7 E
	(c)	(ii) The potential difference between the plastes. Discuss the boundary condition for electric field.	
Q.3	(a)	Write Maxwell's equations for vacuum and derive the wave equation for the electric and magnetic fields in vacuum.	[7]
	(b)	For the copper coaxial cable of inner conductor of radius $a = 2 \text{ mm}$ and outer conductor of inner radius $b = 6 \text{ mm}$ and thickness $t = 1 \text{ mm}$, calculate the resitance of 2 m length of the cable at DC and at 100 MHz.	[7]
Q.4	(a)	Find the capacitance between two long cylindrical wine of radius	
	(b)	What is dot and cross product? Explain its significance and application.	[7] (2) [7] 4
Q.5	(a)	State and explain the Maxwell's equations for time varying field.	[7]
~	(b)	Derive the expression for magnetic boundary conditions.	[7] 3
Q.6	(a)	State Gauss's law. Find the electric flux density at any point 'P' for infinite line charge using Gauss's law.	[7] 3
	(0)	State Coulomb's law and field intensity. If point charges 1 mC and -2 mC are located at $(3, 2, -1)$ and $(-1, -1, 4)$ respectively. Calculate the electric force on a 10 nC charge located at $(0, 3, 1)$ and the electric field intensity at that point.	[7] 3
Q.7	(a) (b)	Derive the phasor vector wave equations(Helmholtz equations). The electric field component of an EM wave propagating through a medium (characterized by $\in = 2_{\epsilon_0}$, $\mu = 2\mu_0$ and $\sigma = 0.05$ S/m is given by $\vec{E}(z,t) = 10e^{-az} \cos(2\pi \times 50 \times 10^6 t - \beta z) \hat{a}_x$ V/m. Compute: (i) Propagation constant, γ (ii) Attenuation constant, α (iii) Phase constant, β (iv) Intrinsic impedance	[7] [7]
Q.8	(a)	Derive the transmission line equations in time-domain as well as in frequency domain for a two-wire transmission line.	[7]
	(b)	Derive the expression for input impedance of a transmission line for a simple connection of a source to a load through the transmission line.	[7]
Q.9	Write (i) Pol	short notes on any two of the following: arization of waves	[7x2=14]
	(ii) Fa (iii) Sl	raday's law of electromagnetic induction kin Depth	

Page 2 of 2