Bihar Engineering University, Patna B.Tech 1" Semester Exam-2022

Course: B. Tech. Code: 105102		Subject: Mathematics-I(Calculus & Linear Algebra)			Time: 03 Hours Full Marks: 70	
(iii) There (iiii) Atten	narks are in e are NINE upt FIVE q	ndicated in the right Equestions in this pa uestions in all. is compulsory.		argin.	41049	
-	pose the co	rrect answer of the	followin	g (any seven Question only):	[2 x 7 = 14]	
(a)	Lagrange's mean value theorem can be proved for a function $f(x)$ by applying Roll's mean value theorem to the function					
		$= f(x) + kx^2$		(ii) $\varphi(x) = f(x) - kx$		
	(iii) φ(x	f(x) = f(x) + kx		(iv) $\varphi(x) = {f(x)}^2 +$		
(b)	The func- in the int	ction $f(x) = x(x + terval [-3, 0])$. Then t	$+ 3)e^{-\frac{x}{2}}$ the value	satisfy all conditions of Roll' of c is :	s mean value theorem	
	(i) 0.			(ii) 1.		
	(iii) 2.			• (iv) - 2.		
(c)				What is the associated eigenv		
	(i) 4/3		(iii) -2.	(iv) None of the above	:	
(d)	If f is con $r^{2,354}$	tinuous on [-2.354,	, 2.354]1	(ii) $\int_{-2.354}^{2.354} f(\cos x) dx = 2 \int_{0}^{2}$	354 floor)dr	
	(i) J _{-2.35} (iii) 2.354			(iv) None of the above $J_{-2.354} f(\cos x) dx = 2 J_0$) (LOSX)UX	
(e)	Let $f(x)$	$= x ^{\frac{3}{2}}, x \in R$ the	en			
		iformly continuous				
		ontinuous, but not d				
		ifferentiable and de		of x is discontinuous at x=0		
(f)	If A(2) = 2i - j+2k, A(3) = 4i - 2j +3k, then $\int_2^3 A \cdot \frac{dA}{dt} dt$ is					
	(i) 5	(ii) 10		(iii) 15 (iv) 20		
(g)		= 0. Then it is calle			lana	
	(i) Soleno			(iii) Irrotational (iv) 1		
(h)	If $3x + 2y + z = 0$, $x + 4y + z = 0$, $2x + y + 4z = 0$ be a system of equations, then (i) It is inconsistent					
			ution v =	0 v=0 z=0		
	 (ii) It has only the trivial solution x =0, y=0, z=0 (iii) Determinant of the matrix of coefficients is zero. 					
	(iv) None			Anteletits is Deret		
(i)	If f(x) is o	continuous in the c	closed in alue c(a	terval [a,b] and $f'(x)$ exists <c<b) <math="" such="" that="">f'(c) = 0 is c</c<b)>	in (a,b) and f(a) = f(b called	
	(i) Taylor'			ii) Mac Laurin's theorem		
	(iii) Rolle'			iv) Lagrange's mean value t	heorem	
(j)	The rank o	of the matrix $\begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix}$	2 3 4 6 is 5 9			
	(i) 3		((ii) 2		
. 3	(iii) 1		(iv) None of these		

Q.2 (a) Show that:

(b)

 $\int_{0}^{\infty} x^{2} e^{-x^{4} dx} \times \int_{\infty}^{\infty} e^{-x^{4}} dx = \frac{\pi}{8\sqrt{2}}$

Use L' Hospital rule to find the following limits.

[7]

[7]

٠