DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING LOK NAYAK JAI PRAKASH INSTITUTE OF TECHNOLOGY, CHAPRA DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LECTURE PLAN, ACADEMIC SESSION 2020-21 (ODD) DATABASE SYSTEMS (CS 1509)

Name of the Faculty: SUDHIR KUMAR PANDEY E-mail id / Contact No. : Sudhir.pandey1987@gmail.com/7007938701 Name of the Subject Allotted: Database Systems (CS 1509) Academic Session / Semester: 2020-21 / 5th semester Branch / Year: CSE/ THIRD YEAR

Course Description: Database management system has evolved from a specialized computer application to a central component of a modern computing environment, and, as result, knowledge about database systems has become an essential part of an education in computer science." The fundamental concepts of database management include aspects of database design, database languages and database system implementation.

Course Objective:

The objectives of this course are:

- To provide a good understanding of the principles and practices of database management system.
- To provide an opportunity to apply the concepts of the various techniques and methods for database management system.
- To understand the different issues involved in the design and implementation of a database system.
- To develop an understanding of essential DBMS concepts such as: transaction processing, integrity, concurrency, and recovery in databases.

Course Outcomes:

Upon completing the course, the student will able to:

- Understand the basics of data base and database design.
- State various types of DBMS, query and transaction concept.
- Demonstrate an understanding of the relational data model.
- Transform an information model into a relational database schema and to use a data definition language and/or utilities to implement the schema using a DBMS.
- Formulate, using SQL &relational algebra, solutions to a broad range of query problems.

Course Plan (Tentative):

Lecture No.	Topics to be Covered
Unit I – Introduction & Data Modeling using Entity Relationship Model	

1	Basic Concepts and Conceptual Database Design, Characteristics of DBMS
2	File System Vs DBMS, Role of DBA
3	Database System concept and architecture
4	Data model, Schema and Instances, Data independence
5	Database language and interfaces, DDL & DML
6	Database Structure and its components
7	ER model concepts, notation for ER diagram, Mapping constraints
8	Keys, Concepts of Super Key, Candidate key, Primary key, Foreign Key
9	Candidate key, Primary key, Foreign Key Examples
10	Extended ER model- Generalization, Aggregation
11	Reduction of an ER diagrams to tables, Relationship of higher degree
UNIT-II: Relational Data Model and SQL	
12	Relational data model concepts, integrity constraints, entity integrity
13	Referential integrity, Keys constraints, Domain constraints
14	Relational algebra, Relational calculus, Tuple and Domain calculus
15	Characteristics of SQL, advantage of SQL. SQL data type and literals
16	Types of SQL commands. SQL operators and their procedure
17	Tables, Views and Indexes, Queries and sub queries
18	Queries and sub queries Examples
19	Aggregate functions, Insert, Update and Delete operations
20	Joins, Unions, Intersection, Minus, Cursors
21	Triggers, Procedures in SQL/PL SQL
UNIT-III: Data Base Design & Normalization	
22	Informal Design Guidelines for Relation Schemas
23	Functional dependencies, Normal forms, 1NF
24	Keys & Attributes participating in Keys
25	1NF ,2NF,
26	3NF, BCNF
27	Inclusion dependence, Loss less join decompositions
28	Loss less join decompositions
29	Normalization using FD

30	Normalization using FD	
31	MVD, and JDs	
UNIT-IV: Transaction Processing Concept & Distributed Database		
32	Introduction of Transaction system, ACID Properties	
33	Testing of Serializability, Serializability of schedules	
34	Conflict & View Serializable schedule	
35	Recoverability, Recovery from transaction failures	
36	Log based recovery, Checkpoints	
37	Deadlock handling	
38	Distributed data storage	
39	Concurrency control, Directory system	
UNIT-V: Concurrency Control Techniques		
40	Concurrency control, Locking Techniques for concurrency control	
41	Time stamping protocols for concurrency control	
42	Validation based protocol	
43	Multiple granularity	
44	Multi version schemes	
45	Recovery with concurrent transaction	
46	Case study of Oracle.	

Students Performance Evaluation Scheme:

- > External Semester Examination : 70 Marks
- > Internal Performance Assessment : 30 Marks
 - 2 Sessional Tests : 20 marks
 - Attendance + Assessment : 10 marks

(Based on Assignments, Seminars, Group Discussions & Class Participation)

Readings:

I. Texts:

T1: Korth, Silberschatz, "Database System Concepts", 5th Ed., TMH, 2006.

T2: Elmsari and Navathe, "Fundamentals of Database Systems", 5th Ed., Pearson Edu., 2009.

II. References:

R1: Date C.J.,"An Introduction to Database Systems" Ed. Addison-Wesley, 2000.

R2: Bipin C. Desai, "An Introduction to Database Systems", Gagotia Publications.

III. Websites:

- <u>http://www.w3schools.com/sql/default.asp</u>
- http://en.wikipedia.org/wiki/Database_normalization
- http://www.sql-tutorial.net