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1. Partial Differential Equations

1.1 Partial Differential Equation (P.D.E.)

We will be studying functions z = z(x1,x2, ...,xn) and their partial derivatives. Here x1,x2, ...,xn are
standard Cartesian coordinates on Rn. We sometimes use the alternate notation u(x,y),u(x,y,z), etc.
We also write e.g. z(r,θ ,φ) for spherical coordinates on R3, etc.

Notation 1.1. Let us consider a function u(x,y) of two independent variables x and y. We use the
following notation for partial derivatives:

p = ∂ z
∂x , q = ∂ z

∂y , r = ∂ 2z
∂x2 , s = ∂ 2z

∂x∂y , t = ∂ 2z
∂y2

Definition 1.1.1 An equation containing one or more partial derivatives of an unknown function
of two or more independent variables is known as a partial differential equation.

� Example 1.1 The example of PDE are as follows:

(i) ∂ z
∂x +

∂ z
∂y = z+ xy

(ii)
(

∂ z
∂x

)2
+ ∂ 2z

∂y2 = 2xy ∂ z
∂x

(iii) p+q = y2

(vi) r3 +2s+ t3 = 0
�

Definition 1.1.2 The order of a partial differential equation is defined as the order of the highest
partial derivative occurring in the partial differential equation. For example: The order of
examples (i) and (iii) are 1 while the order of examples (ii) and (iv) are 2.
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8 Chapter 1. Partial Differential Equations

Definition 1.1.3 The degree of a partial differential equation is defined as the degree of the
highest order partial derivative occurring in the partial differential equation after the equation
has been rationalized i.e. made free from redicals and fractions. For example: The degree of
examples (i), (ii) and (iii) is 1 while the degree of example (iv) is 3.

Definition 1.1.4 A partial differential equation is said to be linear if the dependent variable and
its partial derivatives occur only in first degree and are not multiplied. A partial differential
equation which is not linear is called a non-linear partial differential equation. For example: The
examples (i) and (iii) are linear while the examples (ii) and (iv) are non-linear.

1.1.1 Solution of first order Partial Differential Equations
Lagrange’s partial differential equations of first order: A partial differential equation of the
form Pp+Qq = R is called Lagrange’s partial differential equations of first order, where P, Q, R are
functions of x,y,z only and p = ∂ z

∂x , q = ∂ z
∂y .

Working Rule: To solve the Lagrange’s PDE follow the following steps:
Step-I: Rewrite the given PDE into standard form Pp+Qq = R.
Step-II: Write down the auxiliary as

dx
P = dy

Q = dz
R .

Step-III: By taking any two fraction, solve the above auxiliary equation. Let the two solution be
u = c1 and v = c2.
Step-IV: Write the solution in following any one form:
f (u,v) = 0 or u = f (v) or v = f (u), where f is any arbitrary function.

� Example 1.2 Solve the partial differential equation yp+ yq = z2 +1. �

Solution: By comparing with the first order Lagrange’s partial differential equation Pp+Qq= R,
we get P = y, Q = y and R = z2 +1. The auxiliary equations are

dx
y = dy

y = dz
z2+1 .

By taking first two fraction, we get dx
y = dy

y =⇒ dx = dy
By integrating, we have

x = y+ c1 =⇒ x− y = c1 (1.1)

By taking last two fraction, we get dy
y = dz

z2+1
By integrating, we have

logy = tan−1 z+ c2 =⇒ logy− tan−1 z = c2 (1.2)

From equations (1.1) and (1.2), we can write the solutions in following any one form:
f (x− y, logy− tan−1 z) = 0 or x− y = f (logy− tan−1 z) or logy− tan−1 z = f (x− y). �

Type-1

� Example 1.3 Solve the partial differential equation y2 p− xyq = x(z−2y). �
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1.1 Partial Differential Equation (P.D.E.) 9

Solution: By comparing with the first order Lagrange’s partial differential equation Pp+Qq = R,
we get P = y2, Q =−xy and R = x(z−2y). The auxiliary equations are

dx
y2 = dy

−xy =
dz

x(z−2y) .

By taking first two fraction, we get

dx
y2 = dy

−xy =⇒ dx
y = dy

−x =⇒ xdx+ ydy = 0

By integrating, we have

x2 + y2 = c1 (1.3)

By taking last two fraction, we get

dy
−y

=
dz

(z−2y)
=⇒ (z−2y)dy+ ydz = 0

=⇒ zdy−2ydy+ ydz = 0

=⇒ zdy+ ydz = 2ydy

=⇒ d(yz) = 2ydy

By integrating, we have

yz = y2 + c2 =⇒ yz− y2 = c2 (1.4)

From equations (1.3) and (1.4), the solutions is f (x2 + y2,yz− y2) = 0. �

Exercise

Solve the following PDE:

(1) xp+ yq = z Ans. f (x/z,y/z) = 0
(2) p+q = 1 Ans. f (x− y,x− z) = 0
(3) x2 p+ y2q+ z2 = 0 Ans. f (1

x −
1
y ,

1
y +

1
z ) = 0

(4) yzp+ zxq = xy Ans. f (x2− z2,x2− y2) = 0
(5) zp = x Ans. f (x2− z2,y) = 0

Type-2 (Substitution)

� Example 1.4 Solve the partial differential equation xzp + yzq=xy. �

Solution The Lagrange’s auxiliary equations are

dx
xz = dy

yz = dz
xy .

Taking first two fraction, we get

dx
x = dy

y .

By integrating, we have

logx = logy+ logc1 =⇒ x = c1y. (1.5)

Now taking last two fraction and by putting x = c1y in last fraction, we have
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10 Chapter 1. Partial Differential Equations

dy
z = dz

c1y .

By integrating, we have

c1y2

2
=

z2

2
+

c2

2
=⇒ c1y2 = z2 + c2. (1.6)

By putting the value of c1 = x/y from equation (1.5), we have

xy− z2 = c2 (1.7)

From equations (1.5) and (1.7) the required solution is f (x/y,xy− z2) = 0 �

� Example 1.5 Solve the partial differential equation p+aq = z+ cot(y−ax). �

Solution The Lagrange’s auxiliary equations are

dx
1 = dy

a = dz
z+cot(y−ax) .

Taking first two fraction, we get

dx
1 = dy

a .

By integrating, we have

ax = y− c1 =⇒ y−ax = c1. (1.8)

Now taking last two fraction and by putting y−ax = c1 in last fraction, we have
dy
a = dz

z+cotc1
.

By integrating, we have

y/a = log(z+ cotc1)+ c2. (1.9)

By putting the value of c1 = y−ax from equation (1.8), we have

y/a− log(z+ cot(y−ax)) = c2 (1.10)

From equations (1.8) and (1.10) the required solution is f (y−ax,y/a− log(z+ cot(y−ax))) = 0
�

� Example 1.6 Solve the partial differential equation px(z−2y2) = (z−qy)(z− y2−2x3). �

Solution The given equation can re-written as x(z−2y2)p+ y(z− y2−2x3)q = z(z− y2−2x3).
The Lagrange’s auxiliary equations are

dx
x(z−2y2)

= dy
y(z−y2−2x3)

= dz
z(z−y2−2x3)

.

Taking last two fraction, we get
dy
y = dz

z .

By integrating, we have

logy = logz− logc1 =⇒ c1y = z. (1.11)

Now taking first two fraction and by putting z = c1y in both fraction, we have
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1.1 Partial Differential Equation (P.D.E.) 11

dx
x(c1y−2y2)

= dy
y(c1y−y2−2x3)

.

=⇒ y(c1y− y2−2x3)dx = x(c1y−2y2)dy =⇒ (c1y− y2−2x3)dx = x(c1−2y)dy

(c1y− y2−2x3)dx+ x(2y− c1)dy = 0. (1.12)

which is of the form Mdx+Ndy = 0. Here M = c1y−y2−2x3 and N = x(2y−c1). Then ∂M/∂y =
c1−2y and ∂N/∂x = 2y− c1. Now we have

1
N

(
∂M
∂y −

∂N
∂x

)
= 1

x(2y−c1)
×2(c1−2y) =−2

x

which is function of x alone. Hence by usual rule, integrating factor will be e
∫
(−2/x)dx = e−2logx = x−2.

Multiply the the equation (1.12) by integrating factor I.F.= x−2, we have x−2(c1y− y2−2x3)dx+
x−1(2y− c1)dy = 0, which must be exact differential equation. Hence its solution is∫ {

x−2(c1y− y2−2x3)
}

dx+
∫

x−1(2y− c1) = c2 (1.13)

(treating y as a constant) (terms free from x)

(c1y− y2)× (−1/x)− x2 = c2 =⇒ (y2− c1y)
x

− x2 = c2. (1.14)

By putting the value of c1 = z/y from equation (1.11) in equation (1.14), we have

(y2− z)
x

− x2 = c2 (1.15)

From equations (1.11) and (1.15) the required solution is f
(

z
y ,

(y2−z)
x − x2

)
= 0 �

Exercise

Solve the following PDE:

(1) p−2q = 3x2 sin(y+2x) Ans. f (x2 sin(y+2x)− z,y+2x) = 0
(2) p−q = z/(x+ y) Ans. f (xy, logz+(ax/3y2)) = 0
(3) (x2− y2− z2)p+2xyq = 2xz Ans. f ((x2 + y2 + z2)/z,y/z) = 0
(4) zp− zq = x+ y Ans. f (2x(x+ y)− z2,x+ y) = 0

Type-3 (Multiplier Method)

� Example 1.7 Solve the partial differential equation (mz−ny)p+(nx− lz)q = ly−mx. �

Solution The Lagrange’s auxiliary equations are

dx
mz−ny

=
dy

nx− lz
=

dz
ly−mx

.

Using multipliers l,m,n, each fraction becomes

=
ldx+mdy+ndz

l(mz−ny)+m(nx− lz)+n(ly−mx)
=

ldx+mdy+ndz
0

.
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12 Chapter 1. Partial Differential Equations

=⇒ ldx+mdy+ndz = 0. By integrating we get

lx+my+nz = c1. (1.16)

Now, again using multipliers x,y,z, each fraction becomes

=
xdx+ ydy+ zdz

x(mz−ny)+ y(nx− lz)+ z(ly−mx)
=

xdx+ ydy+ zdz
0

.

=⇒ xdx+ ydy+ zdz = 0. By integrating we get

x2

2
+

y2

2
+

z2

2
=

c2

2
=⇒ x2 + y2 + z2 = c2. (1.17)

From equations (1.16) and (1.17) the required solution is f (lx+my+nz,x2 + y2 + z2) = 0, �

� Example 1.8 Solve the partial differential equation z(x+ y)p+ z(x− y)q = x2 + y2. �

Solution The Lagrange’s auxiliary equations are

dx
z(x+ y)

=
dy

z(x− y)
=

dz
x2 + y2 .

Using multipliers x,−y,−z, each fraction becomes

=
xdx− ydy− zdz

xz(x+ y)− yz(x− y)− z(x2 + y2)
=

xdx− ydy− zdz
0

.

=⇒ xdx− ydy− zdz = 0. By integrating we get

x2− y2− z2 = c1. (1.18)

Again, using multipliers y,x,−z, each fraction becomes

=
ydx+ xdy− zdz

yz(x+ y)+ xz(x− y)− z(x2 + y2)
=

ydx+ xdy− zdz
0

.

=⇒ ydx+ xdy− zdz = 0 =⇒ d(xy)− zdz = 0. By integrating we get

xy− z2/2 = c2. (1.19)

From equations (1.18) and (1.19) the required solution is f (x2− y2− z2,xy− z2/2) = 0, �

� Example 1.9 Solve the partial differential equation x(y2 + z)p− y(x2 + z)q = z(x2− y2). �

Solution The Lagrange’s auxiliary equations are

dx
x(y2 + z)

=
dy

−y(x2 + z)
=

dz
z(x2− y2)

.

Using multipliers x,y,−1, each fraction becomes

=
xdx+ ydy−dz

x2(y2 + z)− y2(x2 + z)− z(x2− y2)
=

xdx+ ydy−dz
0

.
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1.1 Partial Differential Equation (P.D.E.) 13

=⇒ xdx+ ydy−dz = 0. By integrating we get

x2

2
+

y2

2
− z =

c1

2
=⇒ x2 + y2−2z = c1. (1.20)

Again, using multipliers 1/x,1/y,1/z, each fraction becomes

=
(1/x)dx+(1/y)dy+(1/z)dz
(y2 + z)− (x2 + z)+(x2− y2)

=
(1/x)dx+(1/y)dy+(1/z)dz

0
.

=⇒ (1/x)dx+(1/y)dy+(1/z)dz = 0. By integrating we get

logx+ logy+ logz = logc2 =⇒ xyz = c2. (1.21)

From equations (1.20) and (1.21) the required solution is f (x2 + y2−2z,xyz) = 0, �

Exercise

Solve the following PDE:

(1) (y− z)p+(z− x)q = x− y Ans. f (x+ y+ z,x2 + y2 + z2) = 0
(2) (y+ zx)p− (x+ yz)q+ y2− x2 = 0 Ans. f (xy+ z,x2 + y2− z2) = 0
(3) x(y− z)p+ y(z− x)q = z(x− y) Ans. f (x+ y+ z,xyz) = 0
(4) x(y2− z2)p− y(z2 + x2)q = z(x2 + y2) Ans. f (x2 + y2 + z2,x/yz) = 0
(5) (y− zx)p+(x+ yz)q = x2 + y2 Ans. f (x2− y2 + z2,xy− z) = 0

Type-4

� Example 1.10 Solve the partial differential equation (y+ z)p+(z+ x)q = x+ y. �

Solution The Lagrange’s auxiliary equations are

dx
y+ z

=
dy

z+ x
=

dz
x+ y

(1.22)

Using multipliers 1,−1,0, each fraction of (1.22) becomes

=
dx−dy

(y+ z)− (z+ x)
=

d(x− y)
−(x− y)

. (1.23)

Again, using multipliers 0,1,−1, each fraction of (1.22) becomes

=
dy−dz

(z+ x)− (x+ y)
=

d(y− z)
−(y− z)

(1.24)

Finally, using multipliers 1,1,1, each fraction of (1.22) becomes

=
dx+dy+dz

(y+ z)+(z+ x)+(x+ y)
=

d(x+ y+ z)
2(x+ y+ z)

(1.25)

Equations (1.23, 1.24 and 1.25)

=⇒ d(x− y)
−(x− y)

=
d(y− z)
−(y− z)

=
d(x+ y+ z)
2(x+ y+ z)

. (1.26)

Taking the first two fraction of (1.26), we get
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14 Chapter 1. Partial Differential Equations

d(x− y)
(x− y)

=
d(y− z)
(y− z)

By integrating, we get

log(x− y) = log(y− z)+ logc1 =⇒ (x− y)
(y− z)

= c1. (1.27)

Taking the last two fraction of (1.26), we get

d(y− z)
−(y− z)

=
d(x+ y+ z)
2(x+ y+ z)

=⇒ 2
d(y− z)
(y− z)

+
d(x+ y+ z)
(x+ y+ z)

= 0

By integrating, we get

2 log(y− z)+ log(x+ y+ z) = logc2 =⇒ (y− z)2(x+ y+ z) = c2. (1.28)

From equations (1.27) and (1.28) the required solution is f
(
(x− y)
(y− z)

,(y− z)2(x+ y+ z)
)

= 0.

�

� Example 1.11 Solve the partial differential equation (x2− yz)p+(y2− zx)q = z2− xy. �

Solution The Lagrange’s auxiliary equations are

dx
x2− yz

=
dy

y2− zx
=

dz
z2− xy

(1.29)

Using multipliers 1,−1,0, each fraction of (1.29) becomes

=
dx−dy

(x2− yz)− (y2− zx)
=

d(x− y)
x2− y2 + z(x− y)

=⇒ d(x− y)
(x− y)(x+ y+ z)

. (1.30)

Again, using multipliers 0,1,−1, each fraction of (1.29) becomes

=
dy−dz

(y2− zx)− (z2− xy)
=

d(y− z)
y2− z2 + x(y− z)

=⇒ d(y− z)
(y− z)(y+ z+ x)

(1.31)

Once again, using multipliers x,y,z, each fraction of (1.29) becomes

=
xdx+ ydy+ zdz

x(x2− yz)+ y(y2− zx)+ z(z2− xy)
=

xdx+ ydy+ zdz
x3 + y3 + z3−3xyz

=⇒ xdx+ ydy+ zdz
(x+ y+ z)(x2 + y2 + z2− xy− yz− zx)

(1.32)

Finally, using multipliers 1,1,1, each fraction of (1.29) becomes

dx+dy+dz
(x2 + y2 + z2− xy− yz− zx)

(1.33)

Equations (1.30), (1.31), (1.32) and (1.33)

d(x− y)
(x− y)(x+ y+ z)

=
d(y− z)

(y− z)(y+ z+ x)
=

xdx+ ydy+ zdz
(x+ y+ z)(x2 + y2 + z2− xy− yz− zx)

=
dx+dy+dz

(x2 + y2 + z2− xy− yz− zx)
. (1.34)

Taking the first two fraction of (1.34), we get
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1.1 Partial Differential Equation (P.D.E.) 15

d(x− y)
(x− y)

=
d(y− z)
(y− z)

By integrating, we get

log(x− y) = log(y− z)+ logc1 =⇒ (x− y)
(y− z)

= c1. (1.35)

Taking the last two fraction of (1.34), we get

xdx+ ydy+ zdz
(x+ y+ z)(x2 + y2 + z2− xy− yz− zx)

=
dx+dy+dz

(x2 + y2 + z2− xy− yz− zx)

=⇒ xdx+ ydy+ zdz
(x+ y+ z)

= dx+dy+dz

=⇒ xdx+ ydy+ zdz− (x+ y+ z)d(x+ y+ z) = 0

By integrating, we get

x2

2
+

y2

2
+

z2

2
− (x+ y+ z)2

2
=

c2

2
=⇒ (x2 + y2 + z2)− (x+ y+ z)2 = c2. (1.36)

From equations (1.35) and (1.36) the solution is f
(
(x− y)
(y− z)

,(x2 + y2 + z2)− (x+ y+ z)2
)

= 0

�

� Example 1.12 Solve the partial differential equation cos(x+ y)p+ sin(x+ y)q = z. �

Solution The Lagrange’s auxiliary equations are

dx
cos(x+ y)

=
dy

sin(x+ y)
=

dz
z

(1.37)

Using multipliers 1,1,0, each fraction of (1.37) becomes

=
dx+dy

cos(x+ y)+ sin(x+ y)
=

d(x+ y)
cos(x+ y)+ sin(x+ y)

. (1.38)

Again, using multipliers 1,−1,0, each fraction of (1.37) becomes

=
dx−dy

cos(x+ y)− sin(x+ y)
=

d(x− y)
cos(x+ y)− sin(x+ y)

(1.39)

Equations (1.37), (1.38) and (1.39)

=⇒ dz
z
=

d(x+ y)
cos(x+ y)+ sin(x+ y)

=
d(x− y)

cos(x+ y)− sin(x+ y)
(1.40)

Taking the first two fraction of (1.40), we get

dz
z
=

d(x+ y)
cos(x+ y)+ sin(x+ y)

(1.41)

Let x+ y = t so that d(x+ y) = dt. Then second fraction of the above equation can be written as
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16 Chapter 1. Partial Differential Equations

dt
cos t + sin t

=
dt

√
2
(

1√
2

cos t + 1√
2

sin t
) =

dt√
2(sinπ/4cos t + cosπ/4sin t)

=
dt√

2(sin(t +π/4))

Thus from equation (1.41), we have

dz
z
=

dt√
2(sin(t +π/4))

=⇒
√

2
dz
z
= cosec(t +π/4)dt

By integrating, we get

√
2logz = log tan

1
2
(t +π/4)+ logc1 =⇒ z

√
2 = c1 tan

( t
2
+

π

8

)
=⇒ z

√
2 cot

( t
2
+

π

8

)
= c1

=⇒ z
√

2 cot
(

x+ y
2

+
π

8

)
= c1 ∵ t = x+ y.

(1.42)

Taking the last two fraction of (1.40), we get

d(x− y)
cos(x+ y)− sin(x+ y)

=
d(x+ y)

cos(x+ y)+ sin(x+ y)

d(x− y) =
cos(x+ y)− sin(x+ y)
cos(x+ y)+ sin(x+ y)

d(x+ y) (1.43)

Let x+ y = t so that d(x+ y) = dt. Then the above equation can be written as

d(x− y) =
cos t− sin t
cos t + sin t

dt

By integrating, we get

x− y = log(sin t + cos t)− logc2 =⇒ (sin t + cos t)
c2

= ex−y =⇒ e−(x−y)(sin t + cos t) = c2

= e−(x−y)(sin t + cos t) = c2 =⇒ e−(x−y)(sin(x+ y)+ cos(x+ y)) = c2 (1.44)

From equations (1.42) and (1.44) the required solution is

f
(

z
√

2 cot
(

x+ y
2

+
π

8

)
,e−(x−y)(sin(x+ y)+ cos(x+ y))

)
= 0.

�

Exercise
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1.1 Partial Differential Equation (P.D.E.) 17

Solve the following PDE:

(1) y2(x− y)p+ x2(y− x)q = z(x2 + y2) Ans. f (
x− y

z
,x3 + y3) = 0

(2) (x2− y2− z2)p+2xyq = 2xz Ans. f (
y
z
,
x2 + y2 + z2

z
) = 0

(3) (1+ y)p+(1+ x)q = z Ans. f ((1+ x)2− (1+ y)2,(2+ x+ y)/z) = 0
(4) (x2 + y2 + yz)p+(x2 + y2− xz)q = z(x+ y) Ans. f ((x2 + y2)/z2,z− x+ y) = 0
(5) p+q = x+ y+ z Ans. f (x− y,e−x(2+ x+ y+ z)) = 0

1.1.2 General method of solving partial differential equations of order one but of any
degree (non-linear)

Charpit’s Method

Working Rule: Let the given partial differential equation of first order and non-linear in p and q
be f (x,y,z, p,q) = 0
Step-I. Transfer all the terms of the given equation to L.H.S. and denote the entire expression by f .
Step-II. Write the Charpit’s auxiliary equations as follows:

d p
fx + p fz

=
dq

fy +q fz
=

dz
−p fp−q fq

=
dx
− fp

=
dy
− fq

=
dF
0

Where fx =
∂ f
∂x

, fy =
∂ f
∂y

, fp =
∂ f
∂ p

, ...

Step-III. Put the value of fx, fy, fp,... etc, in the Charpit’s auxiliary equation.
Step-IV. Choose two proper fraction from the above auxiliary equation so that we can integrate them
easily and find the value of p and q.
Step-V. Put the values of p and q in dz = pdx+qdy. By integrating this we get the complete integral
of the given equations.

� Example 1.13 Find the complete integral of z = px+qy+ p2 +q2. �

Solution Let f (x,y,z, p,q) = z− px+qy+ p2 +q2 = 0. The Charpit’s auxiliary equations are

d p
fx + p fz

=
dq

fy +q fz
=

dz
−p fp−q fq

=
dx
− fp

=
dy
− fq

=
dF
0

(1.45)

Here fx =−p, fy =−q, fz = 1, fp =−x−2p and fq =−y−2q
Put all these values in equation (1.45), we have

d p
(−p)+ p(1)

=
dq

(−q)+q(1)
=

dz
−p(−x−2p)−q(−y−2q)

=
dx

−(−x−2p)
=

dy
−(−y−2q)

=
dF
0

The above equations reduces to

d p
0

=
dq
0

=
dz

p(x+2p)+q(y+2q)
=

dx
(x+2p)

=
dy

(y+2q)
=

dF
0

(1.46)

The first fraction of (1.46) =⇒ d p = 0 so that p = a( where a is an arbitrary constant)
Similarly, second fraction of (1.46) =⇒ dq = 0 so that q = b( where b is an arbitrary constant)
Putting the value of p= a and q= b in the given equation z= px+qy+ p2+q2, we get the required in-
tegral as z = ax+by+a2+b2. �
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18 Chapter 1. Partial Differential Equations

� Example 1.14 Find the complete integral of zpq = p+q. �

Solution Let f (x,y,z, p,q) = zpq− p+q = 0. The Charpit’s auxiliary equations are

d p
fx + p fz

=
dq

fy +q fz
=

dz
−p fp−q fq

=
dx
− fp

=
dy
− fq

=
dF
0

(1.47)

Here fx = 0, fy = 0, fz = pq, fp = zq−1 and fq = zp−1
Put all these values in equation (1.47), we have

d p
(0)+ p(pq)

=
dq

(0)+q(pq)
=

dz
−p(zq−1)−q(zp−1)

=
dx

−(zq−1)
=

dy
−(zp−1)

=
dF
0

The above equations reduces to

d p
p2q

=
dq
pq2 = · · · =⇒ d p

p
=

dq
q

(1.48)

By integrating we get, log p = logq+ loga =⇒ p = aq. Put the value of p = aq in given equation

zpq = p+q, we get the value of q =
(1+a)

az
and p =

(1+a)
z

. Putting the value of p =
(1+a)

z
and

q =
(1+a)

az
in the equation dz = px+qy, we get

dz =
(1+a)

z
dx+

(1+a)
az

dy =⇒ zdz = (1+a)dx+
(1+a)

a
dy.

By integrating we get the required integral as

z2

2
= (1+a)x+

(1+a)
a

y+b =⇒ z2 = 2
[
(1+a)x+

(1+a)
a

y+b
]
.

�

Exercise

Solve the following PDE:

(1) px+qy = pq Ans. az =
(ax+ y)2

2
+b

(2) p2x+q2y = z Ans.
√
(1+a)z =

√
ax+

√
y+b

(3) 2z+ p2 +qy+2y2 = 0 Ans. 2y2z+ y2(x−a)2 + y4 = b
(4) z2 = pqxy Ans. z = xay1/ab
(5) q = (z+ px)2 Ans. xz = 2

√
ax+ay+b

Special Method to solve non-linear first order partial differential equations

Standard Form-I:(When PDE contains only p and q) Let the given equation which contains only
p and q is f (p,q) = 0.
Step-I: Put the value p = a and q = b in the equation dz = pdx+qdy.
Step-II: By integrating the equation dz = adx+bdy we get z = ax+by+c, where c is an integrating
constant.
Step-III: Now put the value of a = F(b) or b = F(a) from given equation f (a,b) = 0 in z =
ax+by+ c
Step-IV: The required answer will be either z = ax+F(a)y+ c or z = F(b)x+by+ c
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1.1 Partial Differential Equation (P.D.E.) 19

� Example 1.15 Solve p2 +q2 = m2
�

Solution: Given PDE is

p2 +q2 = m2 (1.49)

Which is of the form f (p,q) = 0. Therefore its solution can be found by putting p = a and q = b in
the equation

dz = pdx+qdy i.e. dz = adx+bdy (1.50)

By integrating we get

z = ax+by+ c (1.51)

Also from equation (1.49), we have

a2 +b2 = m2 =⇒ a =
√

m2−b2

Thus the required solution will be

z =
√

m2−b2x+by+ c

� Example 1.16 Find the solution of z2 p2y+6zpxy+2zqx2 +4x2y = 0 �

Solution: The given equation can be written as

z2
(

∂ z
∂x

)2

y+6z
(

∂ z
∂x

)
xy+2z

(
∂ z
∂y

)
x2 +4x2y = 0 (1.52)

By dividing x2y, we get(
z
x

∂ z
∂x

)2

+6
(

z
x

∂ z
∂x

)
+2
(

z
y

∂ z
∂y

)
+4 = 0 (1.53)

Let xdx = dX ydy = dY and zdz = dZ so that x2/2 = X y2/2 = Y and z2/2 = Z Now
equation (1.53) becomes

P2 +6P+2Q+4 = 0 (1.54)

where P =
∂Z
∂X

, Q =
∂Z
∂Y

.

Which is of the form f (P,Q) = 0. Therefore its solution can be found by putting P = a and Q = b in
the equation

dZ = PdX +QdY i.e. dZ = adX +bdY (1.55)

By integrating we get

Z = aX +bY + c (1.56)
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20 Chapter 1. Partial Differential Equations

Also from equation (1.54), we have

a2 +6a+2b+4 = 0 =⇒ b =
a2 +6a−4

2

Thus the solution will be

Z = aX +
a2 +6a−4

2
Y + c

By putting the value X = x2/2, Y = y2/2 and Z = z2/2, we get the required solution as

z2

2
= a

x2

2
+

a2 +6a−4
2

y2

2
+ c =⇒ z2 = ax2 +

a2 +6a−4
2

y2 +2c

Exercise

Solve the following PDE:

(1)
√

p+
√

q = 1 Ans. z = ax+(1−
√

a)y+ c
(2) pq = 1 Ans. z = ax+(1/a)y+ c
(3) x2 p2 + y2q2 = z Ans. 2

√
z = a logx+

√
(1−a2 logy+ c Hint: Take (1/x)dx = dX

(1/y)dy = dY and (1/
√

z)dz = dZ
(4) z2 = pqxy Ans. z = xay1/aC Hint: Take (1/x)dx = dX (1/y)dy = dY and (1/z)dz =

dZ

Special Method to solve non-linear first order partial differential equations

Standard Form-II:(When PDE contains only p, q and z) Let the given equation which contains
only p, q and z is f (p,q,z) = 0.
Step-I: Let u = x+ay where a is any arbitrary constant.

Step-II: Replace p and q by
dz
du

and a
dz
du

respectively. Solve the resulting ordinary differential
equation of first order by usual methods
Step-III: Replace u by x+ay in the solution obtained in step-II.

� Example 1.17 Solve p3 +q3−3pqz �

Solution: Given PDE is

p3 +q3−3pqz (1.57)

Which is of the form f (p,q,z) = 0. Let u = x+ay, where a is an arbitrary constant. Therefore its

solution can be found by putting p =
dz
du

and q = a
dz
du

in the equation

p3 +q3−3pqz =⇒
(

dz
du

)3

+

(
a

dz
du

)3

−3
(

dz
du

)(
a

dz
du

)
z (1.58)

=⇒ (1+a3)
dz
du

= 3az =⇒ (1+a3)
dz
z
= 3adu (1.59)
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1.1 Partial Differential Equation (P.D.E.) 21

By integrating we get

(1+a3) logz = 3au+b =⇒ logz− logb = au (1.60)

Thus the required solution is

=⇒ (1+a3) logz = 3a(x+ay)+b

� Example 1.18 Solve p2 = qz �

Solution: Given PDE is

p2 = qz (1.61)

Which is of the form f (p,q,z) = 0. Let u = x+ay, where a is an arbitrary constant. Therefore its

solution can be found by putting p =
dz
du

and q = a
dz
du

in the equation

p2 = qz =⇒
(

dz
du

)2

=

(
a

dz
du

)
z =⇒ dz

du
= az =⇒ dz

z
= adu (1.62)

By integrating we get

logz = au+ logb =⇒ logz− logb = au =⇒ z
b
= eau (1.63)

Thus the required solution is

z = bea(x+ay)

Exercise

Solve the following PDE:

(1) 9(p2z+q2) = 4 Ans. (x+ay+b)2 = (z+a2)3

(2) p(1+q2) = q(z−α) Ans. (x+ay+b)2 = 4{a(z−α)−1}2

(3) q2 = z2 p2(1− p2) Ans. (x+ay+b)2 = (z2−a2)
(4) z2(p2z2 +q2) = 1 Ans. 9(x+ay+b)2 = (z2 +a2)3

(5) 4(1+ z3) = 9z4 pq Ans. (x+ay+b)2 = a(1+ z3)

Special Method to solve non-linear first order partial differential equations

Standard Form-III:(When PDE contains only p, q, x and y) Let the given equation which con-
tains only p, q, x and y is f (p,q,x,y) = 0.
Step-I: Separate x, p one side and y, q one side, say f1(x, p) = f2(y,q).
Step-II: Take f1(x, p) = f2(y,q) = a(constant). Now consider f1(x, p) = a(constant) and f2(y,q) =
a(constant)
Step-III: Let f1(x, p) = a solve it for p, say p = F1(x,a). Similarly take f2(y,q) = a and solve it for
q, say q = F2(y,a).
Step-IV: Put the value of p = F1(x,a) and q = F2(y,a) in the equation dz = pdx+qdy.
Step-V: The required solution will be z =

∫
F1(x,a)dx+

∫
F2(y,a)dy+b
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22 Chapter 1. Partial Differential Equations

� Example 1.19 Find the integral of x(1+ y)p = y(1+ x)q �

Solution: Separating p and x from q and y, the given equation can be written as

xp
(1+ x)

=
yq

(1+ y)
(1.64)

Equating each side to an arbitrary constant a, we get
xp

(1+ x)
= a and

yq
(1+ y)

= a

so that p = a
(

1+ x
x

)
and q = a

(
1+ y

y

)
. Putting the values of p and q in dz = pdx+qdy, we get

dz = a
(

1
x
+ x
)

dx+a
(

1
y
+ y
)

dy (1.65)

By integrating (1.65), we get the required solution as

z = a(logx+ x)+a(logy+ y)+b =⇒ z = a(logxy+ x+ y)+b. (1.66)

� Example 1.20 Find the integral of py+qx+ pq = 0 �

Solution: Given equation can be written as py+q(x+ p) = 0. Separating p and x from q and y,
the given equation can be written as

p
(p+ x)

=−q
y

(1.67)

Equating each side to an arbitrary constant a, we get
p

(p+ x)
= a and −q

y
= a

so that p =

(
xa

1−a

)
and q =−ay. Putting the values of p and q in dz = pdx+qdy, we get

dz =
(

a
1−a

)
xdx−aydy (1.68)

By integrating (1.68), we get the required solution as

z =
(

a
1−a

)
x2

2
−a

y2

2
+

b
2

=⇒ 2z =
(

a
1−a

)
x2−ay2 +b. (1.69)

� Example 1.21 Find the integral of z(p2−q2) = x− y �

Solution: Given equation can be written as (
√

z∂ z/∂x)2− (
√

z∂ z/∂y)2 = x−y. Let
√

zdz = dZ
so that (2/3)z3/2 = Z. Thus the given equation becomes(

∂Z
∂x

)2

−
(

∂Z
∂y

)2

= x− y =⇒ P2−Q2 = x− y, (1.70)

where P =
∂Z
∂x

and Q =
∂Z
∂y

. Separating P and x from Q and y, we get

P2− x = Q2− y (1.71)
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1.1 Partial Differential Equation (P.D.E.) 23

Equating each side to an arbitrary constant a, we get P2− x = a and Q2− y = a
so that P =

√
a+ x and Q =

√
a+ y. Putting the values of P and Q in Pdx+Qdy, we get

dZ =
√

a+ xdx+
√

a+ ydy (1.72)

By integrating (1.72), we get the required solution as

Z = (2/3)(x+a)3/2 +(2/3)(y+a)3/2 +(2/3)b

(2/3)(z)3/2 = (2/3)(x+a)3/2 +(2/3)(y+a)3/2 +(2/3)b

(z)3/2 = (x+a)3/2 +(y+a)3/2 +b (1.73)

Exercise

Solve the following PDE:

(1) yp = 2yx+ logq Ans. z = (ax+ x2)+(1/a)eay +b
(2) p+q−2px−2qy+1 = 0 Ans. z =−(a/2) log(1−2x)+(1/2)(a+1) log(2y+1)+b
(3) p1/3−q1/3 = 3x−3y Ans. 3x3−3ax2 +a2x+2y4−4ay3 +3a2y2−a3y+b
(4) p2q2 + x2y2 = x2q2(x2 + y2) Ans. z = (1/3)(x2 +a2)3/2 +(y2−a2)1/2 +b

(5) p2 +q2 = (x2 + y2)z Hint:
(

1√
z

∂ z
∂x

)2

+

(
1√
z

∂ z
∂y

)2

= x2 + y2

Ans. 4(z)1/2 = x(x2 +a2)1/2 +a2 sinh−1(x/a)+ y(y2−a2)1/2−a2 cosh−1(y/a)+b

Special Method to solve non-linear first order partial differential equations

Standard Form-IV:(Clairaut’s Form) Let the given equation is Clairaut’s Form i.e. z = px+qy+
f (pq).
Step-I: Put the value p = a and q = b in given equation.
Step-II: The required solution will be z = ax+by+ f (ab)

� Example 1.22 Find the integral of z = px+qy+ pq �

Solution: The given equation is Clairaut’s form z = px+ qy+ f (pq). Hence the required
solution can be found by putting p = a and q = b in given equation i.e. the solution is

z = ax+by+ab. (1.74)

� Example 1.23 Find the integral of (px+qy− z)2 = 1+ p2 +q2
�

Solution: The given equation can be written as is z= px+qx±
√

1+ p2 +q2 which is Clairaut’s
form z = px+qy+ f (pq). Hence the required solution can be found by putting p = a and q = b in
given equation i.e. the solution is

z = ax+bx±
√

1+a2 +b2. (1.75)

Exercise
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24 Chapter 1. Partial Differential Equations

Solve the following PDE:

(1) (p+q)(z− px−qy) = 1 Ans. z = ax+by+
1

a+b

(2) pqz = p2(xq+ p2)+q2(yp+q2) Ans. z = ax+by+
a4 +b4

ab

(3) 2q(z− px−qy) = 1+q2 Ans. z = ax+by+
1+b2

2b
(4) 2 log(z− px−qy) = 1+ pq Ans. z = ax+by+ e

1+ab
2 .
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1.2 PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER 25

1.2 PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER
1.2.1 SOLUTION TO HOMOGENEOUS AND NON-HOMOGENEOUS LINEAR PARTIAL DIFFER-

ENTIAL EQUATIONS SECOND AND HIGHER ORDER

Definition 1.2.1 — (Linear Homogeneous Partial Differential Equation of Order n). An equa-
tion of the type

a0
∂ nz
∂xn +a1

∂ nz
∂xn−1∂y

+a2
∂ nz

∂xn−2∂y2+, . . . ,an
∂ nz
∂yn = φ(x,y), (1.76)

where a0,a1, . . . ,an are constants and φ(x,y) is any function of x and y, is called a homogeneous
linear partial differential equation of order n with constant coefficients. It is called homogeneous
because all the terms contain derivatives of the same order.

Notations: We use the following notations:

∂

∂x
= D and

∂

∂y
= D′

Then equation (1.76) can be written as

a0Dnz+a1Dn−1D′z+a2Dn−2D′2z+, . . . ,+anD′nz = φ(x,y)

or

(a0Dn +a1Dn−1D′+a2Dn−2D′2+, . . . ,+anD′n)z = φ(x,y)

or

F(D,D′)z = φ(x,y),

where F(D,D′) = (a0Dn +a1Dn−1D′+a2Dn−2D′2+, . . . ,+anD′n).

Working Rule to find Complementary Functions:

Step-I: Put the given equation in the standard form

(a0Dn +a1Dn−1D′+a2Dn−2D′2+, . . . ,+anD′n)z = φ(x,y) (1.77)

Step-II: Replacing D by m and D′ by 1 in the equation (1.77), we obtain auxiliary equation (A.E.)
as

a0mn +a1mn−1 +a2mn−2+, . . . ,+an = 0 (1.78)

Step-III: Solve equation (1.78) for m.Then following cases will be arises:
Case-1: Let m = m1,m2, ...,mn are different roots, then complementary function (C.F.) will be

C.F.= f1(y+m1x)+ f2(y+m2x)+ ...+ fn(y+mnx),

where f1, f2, ..., fn are arbitrary functions.
Case-2: Let r roots m = m1 = m2 = ...= mr,(r ≤ n) are equal, then complementary function (C.F.)
will be
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26 Chapter 1. Partial Differential Equations

C.F.= f1(y+mx)+ x f2(y+mx)+ x2 f3(y+mx)+ ...+ xr−1 fr(y+ x).

Case-3: Corresponding to a non-repeated factor D, the C.F. is taken as f1(y).
Case-4: Corresponding to a repeated factor Dr, the C.F. is taken as

f1(y)+ x f2(y)+ x2 f3(y)+ ...+ xr−1 fr(y).

Case-5: Corresponding to a non-repeated factor D′, the C.F. is taken as f1(x).
Case-6: Corresponding to a repeated factor D′r, the C.F. is taken as

f1(x)+ y f2(x)+ y2 f3(x)+ ...+ yr−1 fr(x).

Notations: We use the following notations

p =
∂ z
∂x

,q =
∂ z
∂y

,r =
∂ 2z
∂x2 ,s =

∂ 2z
∂x∂y

, t =
∂ 2z
∂y2 .

� Example 1.24 Solve
∂ 3z
∂x3 −7

∂ 3z
∂x∂y2 +6

∂ 3z
∂y3 = 0 �

Solution: The given partial differential equation can be written as

(D3−7DD′2 +6D′3)z = 0.

By replacing D by m and D′ by 1, the auxiliary equation is

m3−7m+6 = 0 =⇒ (m−1)(m−2)(m+3) = 0.

Hence the roots are m = 1,2,−3, which are different. Therefore general solution will be

z = f1(y+ x)+ f2(y+2x)+ f3(y−3x),

where f1, f2, f3 are arbitrary functions.

� Example 1.25 Solve (D3−6D2D′+11DD′2−6D′3)z = 0 �

Solution: By replacing D by m and D′ by 1, the auxiliary equation is

m3−6m2 +11m−6 = 0 =⇒ (m−1)(m−2)(m−3) = 0.

Hence the roots are m = 1,2,3, which are different. Therefore general solution will be

z = f1(y+ x)+ f2(y+2x)+ f3(y+3x),

where f1, f2, f3 are arbitrary functions.

� Example 1.26 Solve the partial differential equation 25r−40s+16t = 0 �

Solution: Given equation can be written as

(25D2−40DD′+16D′2)z = 0.

By replacing D by m and D′ by 1, the auxiliary equation is

25m2−40m+16 = 0 =⇒ (5m−4)2 = 0.

Hence the roots are m = 4/5,4/5, which are repeated. Therefore general solution will be
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1.2 PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER 27

z = f1(y+
4
5

x)+ x f2(y+
4
5

x)

or

z = f1(5y+4x)+ x f2(5y+4x)

where f1, f2, f3 are arbitrary functions.

� Example 1.27 Solve the partial differential equation D2D′2(D+D′)z = 0 �

Solution: The solution corresponding to the factor D2 is f1(y)+ x f2(y)
The solution corresponding to the factor D′2 is f3(x)+ y f4(x)
The solution corresponding to the factor (D+D′) is f5(y− x)
Hence the general solution will be

z = f1(y)+ x f2(y)+ f3(x)+ y f4(x)+ f5(y− x).

Exercise

Solve the following PDE:

(1) (4D2 +12DD′+9D′2)z = 0
(2) (D3−4D2D′+4DD′2)z = 0
(3) (D4−2D3D′+2DD′3−D′4)z = 0
(4) r = a2t
(5) 2r+5s+2t = 0

Short Method to find the Particular Integral

Short Method-I (When right hand side function is of the form φ(ax + by) i.e. F(D,D′) =
φ(ax+by))
Let F(D,D′) = φ(ax+by) be homogeneous function of D and D′ of order n. Then the particular
integral is defined as

1
F(D,D′)

φ(v) =
1

F(a,b)
∫ ∫

...
∫

φ(v)dvdv...dv,

where v = ax+by and F(a,b) 6= 0.
Exceptional Case:When F(a,b) = 0. Let F(D,D′) = φ(ax+by) be homogeneous function of D
and D′ of order n. Then the particular integral is defined as

1
(bD−aD′)n φ(ax+by) =

xn

bnn!
φ(ax+by).

� Example 1.28 Solve (D2 +3DD′+2D′2)z = x+ y �

Solution: The solution of the auxiliary equation is m2 + 3m+ 2 = 0, which gives m = −1,−2.
therefore it’s complementary function (C.F.) is

C.F.= f1(y− x)+ f2(y−2x), where f1, f2 are arbitrary function.
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28 Chapter 1. Partial Differential Equations

Now, Particular Integral (P.I.) will be

P.I.=
1

F(D,D′)
φ(ax+by) =

1
D2 +3DD′+2D′2

(x+ y)

=
1

12 +3.1.1+2.12

∫ ∫
vdvdv

=
1
6

v3

6

P.I.=
1
36

(x+ y)3

Therefore the required general solution is z =C.F.+P.I.i.e.

z = f1(y− x)+ f2(y−2x)+
1
36

(x+ y)3

� Example 1.29 Solve (D2 +2DD′+D′2)z = e(2x+3y)
�

Solution: The solution of the auxiliary equation is m2 +2m+1 = 0, which gives m =−1,−1.
therefore it’s complementary function (C.F.) is

C.F.= f1(y− x)+ x f2(y− x), where f1, f2 are arbitrary function.

Now, Particular Integral (P.I.) will be

P.I.=
1

F(D,D′)
φ(ax+by) =

1
D2 +2DD′+D′2

e(2x+3y)

=
1

22 +2.2.3+32

∫ ∫
evdvdv

=
1
25

ev

P.I.=
1
25

e(2x+3y)

Therefore the required general solution is z =C.F.+P.I.i.e.

z = f1(y− x)+ x f2(y− x)+
1
25

e(2x+3y).

� Example 1.30 Solve r−2s+ t = sin(2x+3y) �

Solution: Given equation can be written as (D2−2DD′+D′2)z = sin(2x+3y). Therefore the
auxiliary equation is m2−2m+1 = 0, which gives m = 1,1. therefore it’s complementary function
(C.F.) is

C.F.= f1(y+ x)+ x f2(y+ x), where f1, f2 are arbitrary function.

Now, Particular Integral (P.I.) will be

P.I.=
1

F(D,D′)
φ(ax+by) =

1
D2−2DD′+D′2

sin(2x+3y)

=
1

22−2.2.3+32

∫ ∫
sin(v)dvdv

=
1
1
(−sinv)

P.I.= −sin(2x+3y)
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1.2 PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER 29

Therefore the required general solution is z =C.F.+P.I.i.e.

z = f1(y+ x)+ x f2(y+ x)− sin(2x+3y).

� Example 1.31 Solve 4r−4s+ t = 16log(x+2y) �

Solution: Given equation can be written as (4D2−4DD′+D′2)z = 16log(x+2y). Therefore
the auxiliary equation is 4m2−4m+1 = 0 =⇒ (2m−1)2 = 0, which gives m = 1/2,1/2. therefore
it’s complementary function (C.F.) is

C.F.= f1(y+
1
2

x)+ x f2(y+
1
2

x) =⇒= f1(2y+ x)+ x f2(2y+ x),

where f1, f2 are arbitrary function.
Now, Particular Integral (P.I.) will be

P.I.=
1

F(D,D′)
φ(ax+by) =

1
4D2−4DD′+D′2

16log(x+2y)

= 16
1

(2D−D′)2 log(x+2y)

= 16
x2

222!
log(x+2y)

P.I.= 2x2 log(x+2y)

Therefore the required general solution is z =C.F.+P.I.i.e.

z = f1(2y+ x)+ x f2(2y+ x)+2x2 log(x+2y).

Exercise

Solve the following PDE:

(1) (D2 +3DD′+2D′2)z = 2x+3y Ans. z = f1(y− x)+ x f2(y−2x)+1/240(2x+3y)3

(2) (D3−6D2D′+11DD′2−6D′3)z = e(5x+6y) Ans. z = f1(y+ x)+ f2(y+2x)+ f3(y+
3x)− (1/91)e(5x+6y)

(3) (D3−4D2D′+4DD′2)z= 4sin(2x+y) Ans. z= f1(y)+ f2(y+2x)+x f3(y+2x)−x2 cos(2x+
y)

(4) (D3 − 3DD′2 + 2D′3)z =
√

(x−2y) Ans. z = f1(y + x) + x f2(y + x) + f3(y + 2x)−
8

2835
(x−2y)7/2

(5) (D−3D′)2(D+3D′)z = e3x+y Ans. z = f1(y+3x)+x f2(y+3x)+ f3(y−3x)+
x2

12
e3x+y.

Short Method to find the Particular Integral

Short Method-II (When right hand side function is of the form φ(xmyn) i.e. F(D,D′)= φ(xmyn)),
where m and n are either integer or rational number.
Let F(D,D′) = φ(xmyn) be homogeneous function of D and D′ of order n. Then the particular
integral is defined as
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30 Chapter 1. Partial Differential Equations

1
F(D,D′)

φ(xmyn),

Then particular integral evaluated by expanding the symbolic function
1

F(D,D′)
in an infinite series

of ascending power of D or D′.

Remark-1: If n≤ m, then
1

F(D,D′)
should be expanded in powers of

D′

D
whereas If m≤ n, then

1
F(D,D′)

should be expanded in powers of
D
D′

.

Remark-2: Binomial expansion (1+ x)n = 1+nx+
n(n−1)

2!
x2 +

n(n−1)(n−2)
3!

x3 + ...

� Example 1.32 Solve (D2−a2D′2)z = x. �

Solution: The auxiliary equation is m2− a2 = 0, which gives m = −a,+a. Therefore it’s
complementary function (C.F.) is

C.F.= f1(y−ax)+ f2(y+ax), where f1, f2 are arbitrary function.

Now, Particular Integral (P.I.) will be

P.I.=
1

F(D,D′)
φ(xmyn) =

1
D2−a2D′2

(x)

=
1

D2

[
1−
(

a2D′2

D2

)](x)
=

1
D2

[
1−
(

a2D′2

D2

)]−1

(x)

=
1

D2

[
1+
(

a2D′2

D2

)
+

(
a2D′2

D2

)2

+ ...+

]
(x)

=
1

D2

[
1+
(

a2D′2

D2

)
+

(
a4D′4

D4

)
+ ...+

]
(x)

=
1

D2

[
x+
(

a2D′2

D2

)
x+
(

a4D′4

D4

)
x+ ...+

]
=

1
D2

[
x+
(

a2

D2

)
(D′2x)+

(
a4

D4

)
(D′4x)+ ...+

]
=

1
D2 (x)

P.I.=
x3

6
.

Therefore the required general solution is z =C.F.+P.I.i.e.

z = f1(y−ax)+ f2(y+ax)+
x3

6
.

� Example 1.33 Solve (D3−D′3)z = x3y3. �
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1.2 PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER 31

Solution: The auxiliary equation is m3−1 = 0, which gives m = 1,ω,ω2, where ω and ω2 are
cube root of unity. Therefore it’s complementary function (C.F.) is

C.F.= f1(y+ x)+ f2(y+ωx)+ f3(y+ω2x), where f1, f2, f3 are arbitrary function.

Now, Particular Integral (P.I.) will be

P.I.=
1

F(D,D′)
φ(xmyn) =

1
D3−D′3

(x3y3)

=
1

D3

[
1−
(

D′3

D3

)](x3y3)

=
1

D3

[
1−
(

D′3

D3

)]−1

(x3y3)

=
1

D3

[
1+
(

D′3

D3

)
+

(
D′3

D3

)2

+

(
D′3

D3

)3

+ ...+

]
(x3y3)

=
1

D3

[
1+
(

D′3

D3

)
+

(
D′6

D6

)
+

(
D′9

D9

)
+ ...+

]
(x3y3)

=
1

D3

[
(x3y3)+

(
D′3

D3

)
(x3y3)+

(
D′6

D6

)
(x3y3)+ ...+

]
=

1
D3

[
(x3y3)+

(
1

D3

)
(D′3(x3y3))+

(
1

D6

)
(D′6(x3y3))+ ...+

]
=

1
D3

[
(x3y3)+

(
1

D3

)
(x3D′3(y3))+

(
1

D6

)
(x3D′6(y3))+ ...+

]
=

1
D3

[
(x3y3)+

(
1

D3

)
(x3(3.2.1))+

(
1

D6

)
(x3(0))+ ...+

]
=

1
D3

[
x3y3 +6

(
1

D3

)
(x3)

]
=

1
D3 (x

3y3)+6
(

1
D6

)
(x3)

= y3 1
D3 (x

3)+6
(

1
D6

)
(x3)

P.I.= y3 x6

120
+

x9

10080
.

Therefore the required general solution is z =C.F.+P.I.i.e.

z = f1(y+ x)+ f2(y+ωx)+ f3(y+ω
2x)+

x6y3

120
+

x9

10080
.

Exercise

Solve the following PDE:

(1) (D2−6DD′+9D′2)z = 12x2 +36xy Ans. z = f1(y+3x)+ x f2(y+3x)+10x4 +6x3y
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32 Chapter 1. Partial Differential Equations

(2) (D2−2DD′+D′2)z = ex+2y + x3 Ans. z = f1(y+ x)+ x f2(y+ x)+ e(x+2y)+
x5

20
(3) (D3−7DD′2−6D′3)z = x2 + xy2 + y3

Short Method to find the Particular Integral

Short Method-III (General Method).
Let F(D,D′) = φ(x,y) be homogeneous function of D and D′ of order n. The particular integral is
defined as

1
F(D,D′)

φ(x,y),

Let the particular integral can be written as

1
(D−m1D′)(D−m2D′)(D−m3D′)...(D−mnD′)

φ(x,y),

The we use one of the following formula

1
(D−m1D′)

φ(x,y) =
∫

φ(x,c−mx)dx, where c = y+mx.

or

1
(D+m1D′)

φ(x,y) =
∫

φ(x,c−mx)dx, where c = y−mx.

� Example 1.34 Solve
∂ z
∂x

+
∂ z
∂y

= sinx. �

Solution: The auxiliary equation is m+1 = 0, which gives m =−1. Therefore it’s complementary
function (C.F.) is

C.F.= f1(y− x), where f1 is arbitrary function.

Now, Particular Integral (P.I.) will be

P.I.=
1

F(D,D′)
φ(x,y) =

1
(D+D′)

sinx

=
∫
{sinx}dx,

P.I.= −cosx

Therefore the required general solution is z =C.F.+P.I.i.e.

z = f1(y− x)− cosx

� Example 1.35 Solve (D2−DD′−2D′2)z = (y−1)ex. �

Solution: The auxiliary equation is m2−m− 2 = 0, which gives m = −1,2. Therefore it’s
complementary function (C.F.) is

C.F.= f1(y− x)+ f2(y+2x), where f1, f2 are arbitrary function.
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Now, Particular Integral (P.I.) will be

P.I.=
1

F(D,D′)
φ(x,y) =

1
(D+D′)(D−2D′)

(y−1)ex

=
1

(D+D′)

{
1

(D−2D′)
(y−1)ex

}
=

1
(D+D′)

∫
{(c−2x−1)ex}dx,

∴ c = y+2x

=
1

(D+D′)

{
(c−2x−1)ex−

∫
(−2)exdx

}
=

1
(D+D′)

{(c−2x−1)ex +2ex}

=
1

(D+D′)
{(c−2x+1)ex}

=
1

(D+D′)
{(y+2x−2x+1)ex}

∴ c = y+2x

=
1

(D+D′)
{(y+1)ex}

=
∫
(c′+ x+1)exdx

∴ c′ = y− x

P.I.= (c′+ x+1)ex−
∫
(1.ex)dx = (c′+ x+1)ex− ex = yex

∴ c′ = y− x.

Therefore the required general solution is z =C.F.+P.I.i.e.

z = f1(y− x)+ f2(y+2x)+ yex.

� Example 1.36 Solve (D2−DD′−2D′2)z = (2x2 + xy− y2)sinxy− cosxy. �

Solution: The auxiliary equation is m2−m− 2 = 0, which gives m = −1,2. Therefore it’s
complementary function (C.F.) is

C.F.= f1(y− x)+ f2(y+2x), where f1, f2 are arbitrary function.
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Now, Particular Integral (P.I.) will be

P.I.=
1

F(D,D′)
φ(x,y) =

1
(D−2D′)(D+D′)

{
(2x2 + xy− y2)sinxy− cosxy

}
=

1
(D−2D′)(D+D′)

{(2x− y)(x+ y)sinxy− cosxy}

=
1

(D−2D′)

∫
{(2x− x− c)(x+ x+ c)sinx(x+ c)− cosx(x+ c)}dx,

∴ c = y− x

=
1

(D−2D′)

∫ {
(x− c)(2x+ c)sin(x2 + cx)− cos(x2 + cx)

}
dx

=
1

(D−2D′)

{
−(x− c)cos(x2 + cx)+

∫
cos(x2 + cx)dx−

∫
cos(x2 + cx)dx

}
=

1
(D−2D′)

{(y−2x)cosxy}

∴ c = y− x

=
∫
(c′−2x−2x)cosx(c′−2x)dx

=

∴ c′ = y+2x

=
∫
(c′−4x)cos(xc′−2x2)dx

= Let xc′−2x2 = t so that (c′−4x)dx = dt

P.I.= sin(c′x−2x2) = sinxy.

Therefore the required general solution is z =C.F.+P.I.i.e.

z = f1(y− x)+ f2(y+2x)+ sinxy.

Exercise

Solve the following PDE:

(1) (D2−4D′2)z =
4x
y2 −

y
x2 Ans. z = f1(y+2x)+ f2(y−2x)+ x logy+ y logx+3x

(2) r+ s−6t = ysinx Ans. z = f1(y+2x)+ f2(y−3x)− ysinx− cosx
(3) (D2 +2DD′+D′2)z = 2cosy− xsiny Ans. z = f1(y− x)+ x f2(y− x)+ xsiny
(4) r−t = tan3 x tany−tanx tan3 y [AKU2019] Ans. z= f1(y−x)+x f2(y+x)+1/2tany tanx.
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Non-Homogeneous Linear Partial Differential Equations with Constants Coefficients

Definition 1.2.2 A linear partial differential equations with constant coefficients, which are not
homogeneous are called Non-homogeneous.

� Example 1.37 2
∂ 3z
∂ z3 −3

∂ 2z
∂ z2 +

∂ z
∂ z

+2z = x+2y �

� Example 1.38
∂ 3z
∂ z3 +

∂ z
∂ z
−4z = sin(x+2y) �

Definition 1.2.3 A linear differential operator F(D,D′) is known as reducible, if it can be written
as the product of linear factors of the form aD+bD′+c, where a, b and c are constants. F(D,D′)
is known as irreducible, if it is not reducible.

� Example 1.39 D2−D′2 is reducible because it can be written as a linear factor (D2−D′2) =
(D−D′)(D+D′) �

� Example 1.40 D3D′−DD′3 is reducible because it can be written as a linear factor D3D′−DD′3 =
DD′(D−D′)(D+D′) �

� Example 1.41 D2−D′3 is irreducible because it can not be written as a linear factor. �

Working rule for finding C.F. of reducible non-homogeneous linear partial differential
equations with constants coefficients.

Let the given reducible non-homogeneous linear partial differential equations with constants coeffi-
cients be F(D,D′)z = φ(x,y)
Step-I: Factorize F(D,D′) into linear factors.
Step-II: Corresponding to each non-repeated factor (bD− aD′− c), the part of complementary
function is taken as e(cx/b) f1(by+ax), if b 6= 0.
Step-III: Corresponding to repeated factor (bD−aD′− c)r, the part of complementary function is
taken as e(cx/b)

[
f1(by+ax)+ x f2(by+ax)+ x2 f3(by+ax)+ ...+ x(r−1) fr(by+ax)

]
, if b 6= 0.

Step-IV: Corresponding to each non-repeated factor (bD− aD′− c), the part of complementary
function is taken as e−(cy/a) f −1 (by+ax), if a 6= 0.
Step-V: Corresponding to repeated factor (bD− aD′− c)r, the part of complementary function
is taken as e−(cy/a)

[
f1(by+ax)+ y f2(by+ax)+ y2 f3(by+ax)+ ...+ y(r−1) fr(by+ax)

]
, if a 6= 0,

f1, f2, f3, ..., fr are arbitrary functions.

� Example 1.42 Solve the PDE (D2−D′2 +D−D′)z = 0. �

Solution: The given PDE (D2−D′2 +D−D′)z = 0 is reducible because it can be written as a
linear factor

[(D−D′)(D+D′)+D−D′]z = 0 =⇒ (D−D′)(D+D′+1)z = 0.

By comparing (D−D′) with (bD−aD′− c), we get b = 1, a = 1 and c = 0. Now part of comple-
mentary function (C.F.) corresponding to the factor (D−D′) is

e(0.x/(1)) f1(1.y+1.x) =⇒ f1(y+ x).

Again by comparing (D+D′+1) with (bD−aD′−c), we get b = 1, a =−1 and c =−1. Now part
of complementary function (C.F.) corresponding to the factor (D+D′+1) is
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36 Chapter 1. Partial Differential Equations

e((−1).x/(1))φ(1.y+(−1).x) =⇒ e−x f2(y− x).

Hence the required solution is

z = f1(y+ x)+ e−x f2(y− x),

where f1 and f2 are arbitrary function.

� Example 1.43 Solve the PDE r+2s+ t +2p+2q+ z = 0. �

Solution: The given PDE can be written as (D2 +2DD′+D′2+2D+2D′+1)z = 0, which is
reducible because it can be written as a linear factor

[(D+D′)2 +2D+2D′+1]z = 0 =⇒ [(D+D′)2 +2(D+D′)+1]z = 0.

[(D+D′+1)2]z = 0.

By comparing (D+D′+1) with (bD−aD′− c), we get b = 1, a =−1 and c = −1. Now part of
complementary function (C.F.) corresponding to the factor (D+D′+1)2 is

e((−1).x/(1)) { f1(1.y−1.x)+ x f2(1.y−1.x)} =⇒ e−x { f1(y− x)+ x f2(y− x)}.

Hence the required solution is

z = e−x { f1(y− x)+ x f2(y− x)},

where f1 and f2 are arbitrary function.

� Example 1.44 Solve the PDE (3D−5)(7D′+2)DD′(2D+3D′+5)z = 0. �

Solution: The given PDE is in a linear factor. Hence the required solution is

z = e5x/3 f1(3y)+ e−(2y/7) f2(7x)+ f3(y)+ f4(x)+ e(−5x/2) f5(2y−3x),

where f1, f2, f3, f4 and f5 are arbitrary function.

Exercise

Solve the following PDE:

(1) (D2−DD′+D′−1)z = 0 Ans. z = ex f1(y)+ e−x f2(y+ x)
(2) s+ p−q− z = 0 Ans. ex f1(y)+ e−y f2(x)
(3) (D2−DD′−2D′2 +2D+2D′)z = 0 Ans. z = f1(y− x)+ e−2x f2(y+2x)
(4) (D2−D′2 +D−D′)z = 0 Ans. z = f1(y+ x)+ e−x f2(y− x)
(5) (DD′+aD+bD′+ab)z = 0 Ans. z = e−bx f1(y)+ e−ay f2(x)

Working rule for finding C.F. of irreducible non-homogeneous linear partial differential
equations with constants coefficients.

Let the given irreducible non-homogeneous linear partial differential equations with constants
coefficients be F(D,D′)z = φ(x,y)
Step-I: If necessary Factorize F(D,D′) in the form F1(D,D′)F2(D,D′), where F1(D,D′) consists of
product of linear factors in D,D′ and F2(D,D′) consists of product of irreducible factors in D,D′.
Step-II: Write the part of C.F. of linear factors F1(D,D′) as usual method
Step-III: Write the part of C.F. of irreducible factors F2(D,D′) by taking a trial solution
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1.2 PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER 37

C.F.= ∑Aehx+ky,

where A, h and k are arbitrary constants such that F(h,k) = 0
Step-IV: Adding the part of C.F. of reducible factors F1(D,D′), obtained in Step-II and part of C.F.
of irreducible factors F2(D,D′), obtained in Step-III.

� Example 1.45 Solve the PDE (D−D′2)z = 0. �

Solution: Here D−D′2 is not a linear factors in D and D′. Let the trial solution of given equation
is

z = ∑Aehx+ky

Then Dz = Ahehx+ky and D′2z = Ak2ehx+ky. Putting these values in the given equation, we get

Ahehx+ky−Ak2ehx+ky = 0 =⇒ A(h− k2)ehx+ky = 0

h− k2 = 0 =⇒ h = k2.

Replacing h by k2, the most general solution of the given equation is

z = ∑Aek2x+ky,

where A and k are arbitrary constant.

� Example 1.46 Solve the PDE (D−2D′−1)(D−2D′2−1)z = 0. �

Solution: Here (D− 2D′− 1) is a linear factors in D and D′. Therefore its complementary
function (C.F.) is ex f1(y+2x), where f1 is an arbitrary function. To find the complementary function
(C.F.) corresponding factor (D−2D′2−1)z. Let the trial solution of this factor is

z = ∑Aehx+ky

Then Dz = Ahehx+ky and D′2z = Ak2ehx+ky. Putting these values in the factor (D−2D′2−1)z, we get

Ahehx+ky−2Ak2ehx+ky−∑Aehx+ky = 0 =⇒ A(h−2k2−1)ehx+ky = 0

h−2k2−1 = 0 =⇒ h = 2k2 +1.

Replacing h by 2k2 +1, the complementary function (C.F.) corresponding factor (D−2D′2−1)z is
C.F.= ∑Ae(k

2+1)x+ky. Now the required general solution of the given equation is

z = ex f1(y+2x)+∑Ae(k
2+1)x+ky,

where A and k are arbitrary constant.

� Example 1.47 Solve the PDE (2D4−3D2D′+D′2)z = 0. �

Solution: Given equation can be written as (2D2−D′)(D2−D′)z = 0. To find the complemen-
tary function (C.F.) corresponding factor (D2−D′)z. Let the trial solution of this factor is

z = ∑Aehx+ky
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Then D2z = Ah2ehx+ky and D′z = Akehx+ky. Putting these values in the factor (D2−D′)z, we get

Ah2ehx+ky−Akehx+ky = 0 =⇒ A(h2− k)ehx+ky = 0

h2− k = 0 =⇒ k = h2.

Replacing k by h2, the complementary function (C.F.) corresponding factor (D2−D′)z is C.F. =
∑Aehx+h2y.
Again to find the complementary function (C.F.) corresponding factor (2D2−D′)z. Let the trial
solution of this factor is

z = ∑A1eh1x+k1y

Then D2z = A1h2
1eh1x+k1y and D′z = A1k1eh1x+k1y. Putting these values in the factor (2D2−D′)z, we

get

2A1h2
1eh1x+k1y−A1k1eh1x+k1y = 0 =⇒ A1(2h2

1− k1)eh1x+k1y = 0

2h2
1− k1 = 0 =⇒ k1 = 2h2

1.

Replacing k1 by 2h2
1, the complementary function (C.F.) corresponding factor (2D2−D′)z is C.F.=

∑A1eh1x+2h2
1y. Now the required general solution of the given equation is

z = ∑Aehx+h2y +∑A1eh1x+2h2
1y,

where A, A1, h and h1 are arbitrary constant.

Exercise

Solve the following PDE:

(1) (D2 +D′2)z = n2z Ans. z = ∑Aen(xcosα+ysinα) (Here h = ncosα and k = nsinα)
(2) (D+2D′−3)(D2 +D′)z = 0 Ans. z = e3x f1(y−2x)+∑Aehx−h2y

(3) (D2−D′)z = 0 Ans. z = ∑Aehx+h2y

(4) (2D2−D′2 +D)z = 0 Ans. z = ∑Aehx+ky, where 2h2− k2 +h = 0.

Working rule for finding Particular Integral P.I. of reducible/irreducible non-homogeneous
linear partial differential equations with constants coefficients.

Let the given reducible/irreducible non-homogeneous linear partial differential equations with
constants coefficients be F(D,D′)z = φ(x,y)
Case-I: When φ(x,y) = eax+by and F(a,b) 6= 0.
Then, we get the P.I. by replacing D by a and D′ by b. i.e.

P.I.=
1

F(D,D′)
eax+by =

1
F(a,b)

eax+by

� Example 1.48 Solve the PDE (DD′+aD+bD′+ab)z = emx+ny. �

Solution: The given equation can be written as (D+ b)(D′+ a)z = emx+ny, which is reducible.
Hence complementary function (C.F.) is
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C.F.= e−bx f1(y)+ e−ay f2(x), f1 and f2 are arbitrary constant.

and

P.I.=
1

F(D,D′)
eax+by =

1
(D+b)(D′+a)

emx+ny =
1

(m+b,n+a)
emx+ny.

Hence the required solution is

z = e−bx f1(y)+ e−ay f2(x)+
1

(m+b,n+a)
emx+ny.

� Example 1.49 Solve the PDE (D2−D′2 +D−D′)z = e2x+3y. �

Solution: The given equation can be written as

[(D−D′)(D+D′)+D−D′]z = e2x+3y =⇒ (D−D′)(D+D′+1)z = e2x+3y,

which is reducible. Hence it’s complementary function (C.F.) is

C.F.= f1(y+ x)+ e−x f2(y− x), f1 and f2 are arbitrary constant.

and

P.I.=
1

F(D,D′)
eax+by =

1
(D−D′)(D+D′+1)

e2x+3y =
1

(2−3)(2+3+1)
e2x+3y =⇒=−1

6
e2x+3y.

Hence the required solution is

z = f1(y+ x)+ e−x f2(y− x)− 1
6

e2x+3y.

� Example 1.50 Solve the PDE (D2−4DD′+D−1)z = e3x−2y. �

Solution: The given equation can not be written as linear factors. Hence it’s complementary function
(C.F.) is taken as a trial solution

z = ∑Aehx+ky.

Therefore we have Dz=∑Ahehx+ky, D2z=∑Ah2ehx+kyand DD′z=∑Ahkehx+ky. Put all these values
in given equation (D2−4DD′+D−1)z = 0, we have

∑Ah2ehx+ky−4∑Ahkehx+ky +∑Ahehx+ky−∑Aehx+ky = 0.

=⇒ ∑A(h2−4hk+h−1)ehx+ky = 0 =⇒ (h2−4hk+h−1) = 0.

=⇒ k =
(h2 +h−1)

4h
.

Thus C.F.= ∑Aehx+ky, where k =
(h2 +h−1)

4h

P.I.=
1

F(D,D′)
eax+by =

1
(D2−4DD′+D−1)

e3x−2y =
1

(32−4.3.(−2)+3−1)
e3x−2y =

1
35

e3x−2y.

Hence the required solution is
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z = ∑Aehx+ky +
1
35

e3x−2y, where k =
(h2 +h−1)

4h
.

Exercise

Solve the following PDE:

(1) (D−D′−1)(D−D′−2)z = e2x−y Ans. z = ex f1(y+ x)+ e2x f2(y+ x)+(1/2)e2x−1.

(2) (D3−3DD′+D+1)z = e2x+3y Ans. z = ∑Aehx+ky− 1
7

e2x+3y, where k =
(h3 +h+1)

3h
.

(3) (D2−D′2−3D′)z = ex+2y Ans. z = ∑Aehx+ky− 1
9

ex+2y, where h =
√

k2 +3k.

(4) (D2−D′2 +D+3D′−2)z = ex−y Ans. z = e−2x f1(y+ x)+ ex f2(y− x)− (1/4)ex−y.
Case-II: When φ(x,y) = sin(ax+by) or cos(ax+by).
Then, we get the P.I., by replacing D2 by −a2, D′2 by −b2 and DD′ by −ab in

P.I.=
1

F(D,D′)
sin(ax+by) or

1
F(D,D′)

cos(ax+by),

provided denominator should not be zero.

� Example 1.51 Solve the PDE (D2 +DD′+D′−1)z = sin(x+2y). �

Solution: The given equation can be written as linear factors (D+1)(D+D′−1)z = sin(x+2y).
Hence it’s complementary function (C.F.) is

C.F.= e−x f1(y)+ ex f2(y− x).

Now

P.I.=
1

F(D,D′)
sin(x+2y) =

1
(D2 +DD′+D′−1)

sin(x+2y) =

1
(−12 +(−1.2)+D′−1)

sin(x+2y) =
1

D′−4
sin(x+2y).

P.I.= (D′+4)
1

D′2−42 sin(x+2y) =⇒ (D′+4)
1

−22−16
sin(x+2y).

P.I.=− 1
20

(D′+4)sin(x+2y) =⇒ − 1
20

[D′ sin(x+2y)+4sin(x+2y)] .

P.I.=− 1
20

[2cos(x+2y)+4sin(x+2y)] .

Hence the required solution is

z = e−x f1(y)+ ex f2(y− x)− 1
10

[cos(x+2y)+2sin(x+2y)].

� Example 1.52 Solve the PDE (D−D′2)z = cos(x−3y). �

Solution: The given equation can not be written as linear factors. Hence it’s complementary function
(C.F.) is taken as a trial solution
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1.2 PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER 41

z = ∑Aehx+ky.

So that Dz = ∑Ahehx+ky and D′2z = ∑Ak2ehx+ky. By Putting these values in given equation (D−
D′2)z = 0, we have

∑Ahehx+ky−∑Ak2ehx+ky = 0 =⇒ ∑A(h− k2)ehx+ky = 0.

h− k2 = 0 =⇒ h = k2.

Hence

C.F.= ∑Aek2x+ky.

P.I.=
1

F(D,D′)
cos(ax+by) =

1
(D−D′2)

cos(x−3y) =
1

(D− (−32))
cos(x−3y) =

1
D+9

cos(x−3y).

P.I.= (D−9)
1

D2−92 cos(x−3y) =⇒ (D−9)
1

−12−81
cos(x−3y).

P.I.=− 1
82

(D−9)cos(x−3y) =⇒ − 1
82

[Dcos(x−3y)−9cos(x−3y)] .

P.I.=− 1
82

[−sin(x−3y)−9cos(x−3y)] =⇒=
1
82

[sin(x−3y)+9cos(x−3y)] .

Hence the required solution is

z = ∑Aek2x+ky +
1
82

[sin(x−3y)+9cos(x−3y)].

Exercise

Solve the following PDE:

(1)
∂ 2z
∂x2 −

∂ 2z
∂x∂y

+
∂ z
∂y
−z = cos(x+2y) Ans. z = ex f1(y)+e−x f2(y+x)+(1/2)sin(x+2y).

(2) (D2−DD′−2D)z= sin(3x+4y) Ans. z= f1(y)+e2x f2(y+x)+(1/15) [sin(3x+4y)+2cos(3x+4y)].
(3) (D−D′−1)(D−D′−2)z= sin(2x+3y) Ans. z= ex f1(y+x)+e2x f2(y+x)+(1/10) [sin(2x+3y)−3cos(2x+3y)].

(4) (D2−D′)z = cos(3x− y) Ans. z = ∑Aehx+h2y− 1
82

[−sin(3x− y)+9cos(3x− y)].

Case-III: When φ(x,y) = xmyn .
Then

P.I.=
1

F(D,D′)
xmyn = [F(D,D′)]−1 = xmyn.

which is evaluated by expanding [F(D,D′)]−1 in ascending powers of D/D′ or D′/D as the case may
be.

� Example 1.53 Solve the PDE s+ p−q = z+ xy. �
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The given equation can be rewritten as (DD′+D−D′−1)z = xy =⇒ (D−1)(D′+1)z = xy.
The complementary function (C.F.) is

ex f1(y)+ e−y f2(x), where f1 and f2 are arbitrary function.

Now

P.I.=
1

F(D,D′)
xmyn =

1
(D−1)(D′+1)

xy.

=− 1
(1−D)(1+D′)

xy =⇒ −(1−D)−1(1+D′)−1xy.

=−
[
1+D+D2 + ...

][
1−D′+D′2− ...

]
xy.

=−
[
1+D+D2 + ...

][
xy−D′(xy)+D′2(xy)− ...

]
.

=−
[
1+D+D2 + ...

]
(xy− x) .

=−
[
(xy− x)+D(xy− x)+D2 (xy− x)+ ...

]
.

=− [(xy− x)+(y−1)] .

=−xy+ x− y+1.

Therefore the required solution is

z = ex f1(y)+ e−y f2(x)− xy+ x− y+1.

� Example 1.54 Solve the PDE r− s+ p = 1. �

The given equation can be rewritten as (D2−DD′+D)z = 1 =⇒ D(D−D′+1)z = 1.
The complementary function (C.F.) is

f1(y)+ e−x f2(y+ x), where f1 and f2 are arbitrary function.

Now

P.I.=
1

F(D,D′)
xmyn =

1
D(D−D′+1)

.1

=
1
D
(1+D−D′)−1.1 =⇒ 1

D

[
1− (D−D′)+(D−D′)2− ...

]
.1

=
1
D
.1 =⇒= x

Therefore the required solution is

z = f1(y)+ e−x f2(x+ y)+ x.

� Example 1.55 Solve the PDE D(D+D′−1)(D+3D′−2)z = x2−4xy+2y2
�

The given equation is has reducible factor. Therefore, the complementary function (C.F.) is
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f1(y)+ ex f2(y− x)+ e2x f3(y−3x), where f1, f2 and f3 are arbitrary function.

Now

P.I.=
1

F(D,D′)
φ(x,y) =

1
D(D+D′−1)(D+3D′−2)

(x2−4xy+2y2)

=
1

2D
(1− (D+D′)−1)

{
1− D+3D′

2

}−1

(x2−4xy+2y2)

=
1

2D

{
1+(D+D′)+(D+D′)2 + ...

}{
1+

D+3D′

2
+

(
D+3D′

2

)2

+ ...+

}
(x2−4xy+2y2)

=
1

2D

{
1+(D+D′)+(D+D′)2 +

D+3D′

2
+

(
D+3D′

2

)2

+

(D+D′)(D+3D′)
2

...

}
(x2−4xy+2y2)

=
1

2D

{
1+(D+D′)+(D+D′)2 +

D+3D′

2
+

(
D+3D′

2

)2

+

(D+D′)(D+3D′)
2

...

}
(x2−4xy+2y2).

=
1

2D

{
1+

3D
2

+
5D′

2
+

7D2

4
+

19D′2

4
+

11DD′

2
...

}
(x2−4xy+2y2).

=
1

2D

{
(x2−4xy+2y2)+3(x−2y)+5(2y−2x)+

7
2
+19−22

}
.

=
1

2D

{
x2−4xy+2y2−7x+4y+

1
2

}
.

=
1
2

{
x3

3
−2x2y+2y2x− 7x2

2
+4xy+

x
2

}
.

Therefore the required solution is

z = f1(y)+ ex f2(y− x)+ e2x f3(y−3x)+
1
2

{
x3

3
−2x2y+2y2x− 7x2

2
+4xy+

x
2

}
.

Exercise

Solve the following PDE:

(1) (D+D′−1)(D+2D′−3)z= 4+3x+6y Ans. z= ex f1(y−x)+e3x f2(y−2x)+6+x+2y
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(2) (D2−D′2− 3D+ 3D′)z = xy Ans. z = f1(y+ x)+ e3x f2(y− x)− (1/6)x2y− (x2/9)−
(2x/27)− (x3/18).

(3) r− t + p+3q−2 = x2y Ans. z = e−2x f1(y+ x)+ ex f2(y− x)− (4x2y+4xy+6x2 +6y+
12x+21)/8.

Case-IV: When φ(x,y) =Veax+by, where V is a ny function of x and y.
Then

P.I.=
1

F(D,D′)
Veax+by = eax+by 1

F(D+a,D′+b)
V.

� Example 1.56 Solve the PDE (D2−D′)z = xeax+a2y. �

Solution: The given equation can not be written as linear factors. Hence it’s complementary function
(C.F.) is taken as a trial solution

z = ∑Aehx+ky.

So that D2z = ∑Ah2ehx+ky and D′z = ∑Akehx+ky. By Putting these values in given equation (D2−
D′)z = 0, we have

∑Ah2ehx+ky−∑Akehx+ky = 0 =⇒ ∑A(h2− k)ehx+ky = 0.

h2− k = 0 =⇒ k = h2.

Hence

C.F.= ∑Aehx+h2y.

P.I.=
1

F(D,D′)
φ(x,y) =

1
(D2−D′)

xeax+a2y = eax+a2y 1
((D+a)2− (D′+a2)

x

= eax+a2y 1
D2 +2aD−D′

x = eax+a2y 1
2aD

1

1+
(

D2−D′

2aD

)x

= eax+a2y 1
2aD

[
1+
(

D2−D′

2aD

)]−1

x

= eax+a2y 1
2aD

[
1−
(

D2−D′

2aD

)
+

(
D2−D′

2aD

)2

− ...

]
x

= eax+a2y 1
2aD

[
x−
(

D
2a

x− D′

2aD
x
)
+ ...

]

= eax+a2y 1
2aD

[
x− 1

2a

]
=⇒= eax+a2y 1

2a

[
x2

2
− 1

2a
x
]

Hence the required solution is

z = ∑Aehx+h2y + eax+a2y
[

x2

4a
− x

4a2

]
.
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� Example 1.57 Solve the PDE (D−3D′−2)2z = 2e2x sin(y+3x) �

The given equation is has reducible factor. Therefore, the complementary function (C.F.) is

e2x [ f1(y+3x)+ x f2(y+3x)], where f1 and f2 are arbitrary function.

Now

P.I.=
1

F(D,D′)
φ(x,y) =

1
(D−3D′−2)2 2e2x sin(y+3x)

=
1

(D−3D′−2)2 2e2x+0y sin(y+3x) =⇒ 2e2x+0y 1

((D+2)−3(D′+0)−2)2 sin(y+3x

= 2e2x 1
(D−3D′)2 sin(y+3x) =⇒ 2e2x x2

122!
sin(y+3x)

Hence the required solution is

z = e2x [ f1(y+3x)+ x f2(y+3x)]+2e2x x2

122!
sin(y+3x).

Exercise

Solve the following PDE:

(1) (3D2 − 2D′2 + D− 1)z = 4ex+y cos(x + y) Ans. z = ∑Aehx+ky + (4/3)ex+y sin(x + y),
where h and k are related by 3h2−2k2 +h−1.

(2) (D−3D′−2)2z = 2e2x tan(y+3x) Ans. z = e2x f1(y+3x)+ x f2(y+3x)+ x2e2x tan(y+
3x).

(3) r−3s+2t− p+2q = (2+4x)e−y Ans. z = f1(y+2x)+ ex f2(y+ x)+ x2e−y.
Case-V: When φ(x,y) = eax+by and F(a,b) = 0.
Then

P.I.=
1

F(D,D′)
eax+by =

1
F(D,D′)

eax+by.1 = eax+by 1
F(D+a,D′+b)

.x0y0

� Example 1.58 Solve the PDE (D2−D′)z = ex+y. �

Solution: The given equation can not be written as linear factors. Hence it’s complementary function
(C.F.) is taken as a trial solution

z = ∑Aehx+ky.

So that D2z = ∑Ah2ehx+ky and D′z = ∑Akehx+ky. By Putting these values in given equation (D2−
D′)z = 0, we have

∑Ah2ehx+ky−∑Akehx+ky = 0 =⇒ ∑A(h2− k)ehx+ky = 0.

h2− k = 0 =⇒ k = h2.

Hence
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C.F.= ∑Aehx+h2y.

P.I.=
1

F(D,D′)
φ(x,y) =

1
(D2−D′)

ex+y.1 = ex+y 1
((D+1)2− (D′+1)

.1

= ex+y 1
D2 +2D−D′

.1 = ex+y 1
2D

1

1+
[(

D2−D′

2D

)] .1

= ex+y 1
2D

[
1+
(

D2−D′

2D

)]−1

.1

= ex+y 1
2D

[
1−
(

D2−D′

2D

)
+

(
D2−D′

2D

)2

− ...

]
.1

= ex+y 1
2D

[
1−
(

D
2
.1− D′

2D
.1
)
+ ...

]

= ex+y 1
2D

(1) =⇒= ex+y
(

1
2

)
x

Hence the required solution is

z = ∑Aehx+h2y +
x
2

ex+y.

Exercise

Solve the following PDE:

(1) (D2−D′2−3D+3D′)z = ex+2y Ans. z = f1(y+ x)+ e3x f2(y− x)− xex+2y.

(2) (D2−D′)z = e2x+y Ans. z = ∑Aehx+h2y− 1
3

e2x+y

(3) r−4s+4t + p−2q = ex+y Ans. z = f1(y+2x)+ e−x f2(y+2x)− xex+y.

Classification of second order partial differential equations

Consider a general second order partial differential equation for a function of two variables x and y
in the form

Rr+Ss+Tt+f(x,y,z,p,q)=0, (1.79)

where p =
∂ z
∂x

, q =
∂ z
∂y

, r =
∂ 2z
∂x2 , s =

∂ 2z
∂x∂y

, t =
∂ 2z
∂y2 . Also R, S and T are continuous functions of

x and y only possessing partial derivatives defined in a domain D on the x− y plan. Then the given
equation (1.79) is said to be
• Hyperbolic at a point (x,y) in domain D if S2−4RT > 0
• Parabolic at a point (x,y) in domain D if S2−4RT = 0
• Elliptic at a point (x,y) in domain D if S2−4RT < 0
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� Example 1.59 Classify the following partial differential equation

1.
∂ 2z
∂x2 =

∂ 2z
∂y2 .

2. 2
∂ 2z
∂x2 +

∂ 2z
∂x∂y

+3
∂ 2z
∂y2 = 2.

3. (xy−1)r−2(x2y2−1)s− (xy+1)t + xp+ yq = 0
�

Solution (1.) The given equation can be written as r− t = 0. Comparing the given equation with

Rr+Ss+Tt + f (x,y,z, p,q) = 0,

We have R= 1, S= 0 and T =−1. Put these values in S2−4RT =(0)2−4.(1)(−1) =⇒ S2−4RT =
4 > 0. Therefore the given equation is hyperbolic.
Solution (2.) The given equation can be written as 2r+s+3t−2 = 0. Comparing the given equation
with

Rr+Ss+Tt + f (x,y,z, p,q) = 0,

We have R = 2, S = 1 and T = 3. Put these values in S2−4RT = (1)2−4.(2)(3) =⇒ S2−4RT =
−23 < 0. Therefore the given equation is elliptic.
Solution (3.) Comparing the given equation with

Rr+Ss+Tt + f (x,y,z, p,q) = 0,

We have R = (xy−1), S =−2(x2y2−1) and T =−(xy+1). Put these values in

S2−4RT = (−2(x2y2−1))2−4.((xy−1)).(−(xy+1)) =⇒ 4(x2y2−1))2 +4.((x2y2−1)).

S2−4RT = 4x2y2(x2y2−1).

Case-1: Either x = 0 or y = 0 or both x = y = 0. In this case S2−4RT = 0, hence given equation is
parabola.
Case-2: If xy =±1, then in this case S2−4RT = 0, hence given equation is parabola.
Case-3: If x2y2 > 1, then in this case S2−4RT > 0, hence given equation is hyperbola.
Case-4: If x2y2 < 1, then in this case S2−4RT < 0, hence given equation is elliptic.

� Example 1.60 — (AKU-CE-II,2019). Classify the partial differential equation
∂ 2u
∂ t2 + t

∂ 2u
∂x∂ t

+

x
∂ 2u
∂x2 +2

∂u
∂ t

+
∂u
∂x

+6u = 0. �

Solution: Comparing the given equation with

Rr+Ss+Tt + f (x,y,z, p,q) = 0,

We have R = x, S = t and T = 1. Put these values in

S2−4RT = (t)2−4.(x).(1) =⇒ S2−4RT = t2−4x.

Case-1: If x = t2/4, then in this case S2−4RT = 0, hence given equation is parabola.
Case-2: If x < t2/4, then in this case S2−4RT > 0, hence given equation is hyperbola.
Case-3: If x > t2/4, then in this case S2−4RT < 0, hence given equation is elliptic.
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� Example 1.61 — (AKU-CE-II,2019). The region in which the following partial differential equa-

tion x3 ∂ 2u
∂x2 +3

∂ 2u
∂x∂y

+27
∂ 2u
∂y2 +5u = 0. �

Solution: Comparing the given equation with

Rr+Ss+Tt + f (x,y,z, p,q) = 0,

We have R = x3, S = 3 and T = 27. Put these values in

S2−4RT = (3)2−4.(x3).(27) =⇒ S2−4RT = 9−108x3.

Case-1: If x = (1/12)1/3, then in this case S2−4RT = 0, hence given equation is parabola.
Case-2: If x < (1/12)1/3, then in this case S2−4RT > 0, hence given equation is hyperbola.
Case-3: If x > (1/12)1/3, then in this case S2−4RT < 0, hence given equation is elliptic.

Exercise

Classify the following PDE:

(1.)
∂ 2z
∂x2 +

∂ 2z
∂y2 = 0.

(2.)
∂ 2z
∂x2 +4

∂ 2z
∂x∂y

+4
∂ 2z
∂y2 = 0.

(3.) xyr− (x2− y2)s− xyt + py−qx = 2(x2− y2)
(4.) x2(y−1)r− x(y2−1)s+ y(y−1)t + xyp−q = 0

METHOD OF SEPARATION OF VARIABLES

In this method, we assume that the dependent variable is the product of two functions, each of which
involves only one of the independent variables. So two ordinary differential equations are formed.
Notations: Let u(x, t) is a function of two variable x and t. We use the following notations:

∂u
∂x

= ux = ux(x, t),
∂u
∂ t

= ut = ut(x, t),
(

∂u
∂x

)
x=π

= ux(π, t),
(

∂u
∂ t

)
t=0

= ut(x,0)

� Example 1.62 Solve the boundary value problem
∂u
∂x

= 4
∂u
∂y

, if u(0,y) = 8e−3y. �

Solution: Given that

∂u
∂x

= 4
∂u
∂y

, (1.80)

with boundary condition u(0,y) = 8e−3y.
Let the given equation has the solution of the form u(x,y) = X(x)Y (y), where X is function of x

alone and Y is function of y alone. Now
∂u
∂x

= X ′(x)Y (y) and
∂u
∂y

= X(x)Y ′(y). Putting these values

in given equation, we have

X ′Y = 4XY ′ =⇒ X ′

4X
=

Y ′

Y
, (1.81)

Since x and y are independent variables, therefore above equation can only true if each side is equal
to the same constant. i.e.
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X ′

4X
=

Y ′

Y
= k(constant) =⇒ X ′−4kX = 0 and Y ′− kY = 0

These are ordinary differential equation of first order first degree. Therefore its solutions will be

X ′

X
= 4k =⇒ logX = 4kx+ logc1 =⇒ X

c1
= 4kx =⇒ X = c1e4kx

Similarly solution corresponding to Y ′− kY = 0 , we get Y = c2eky. Substituting the values of X and
Y in the trail solution u(x,y) = X(x)Y (y) i.e.

u(x,y) = c1e4kx.c2eky =⇒ u(x,y) =Ce4kx+ky,

where C = c1c2 is another arbitrary constant.
Now putting x = 0 and using boundary condition u(0,y) = 8e−3y, we have

u(0,y) =Ce4k.0+ky =⇒ 8e−3y =Ceky

Thus we have C = 8 and k =−3. Thus the required solution will be u(x,y) = 8e−12x−3y.

� Example 1.63 Using the method of separation of variable, solve
∂u
∂x

= 2
∂u
∂ t

+u, where u(x,0) =

6e−3x. �

Solution: Given that

∂u
∂x

= 2
∂u
∂ t

+u, (1.82)

with boundary condition u(x,0) = 6e−3x.
Let the given equation has the solution of the form u(x, t) = X(x)T (t), where X is function of x

alone and T is function of t alone. Now
∂u
∂x

= X ′(x)T (t) and
∂u
∂ t

= X(x)T ′(t). Putting these values
in given equation, we have

X ′T = 2XT ′+XT =⇒ X ′T = X(2T ′+T ) =⇒ X ′

X
= 2

T ′

T
+1, (1.83)

Since x and t are independent variables, therefore above equation can only true if each side is equal
to the same constant. i.e.

X ′

X
= 2

(
T ′

T

)
+1 = k(constant) =⇒ X ′− kX = 0 and 2T ′+T − kT = 0

These are ordinary differential equation of first order first degree. Therefore its solutions will be

X ′− kX = 0 =⇒ X ′

X
= k =⇒ logX = kx+ logc1 =⇒ X

c1
= kx =⇒ X = c1ekx

Now, solution corresponding to 2T ′+T − kT = 0 =⇒ 2T ′ = T (k−1) =⇒ 2
T ′

T
=

(k−1)
2

, we

get T = c2e
(k−1)

2 t . Substituting the values of X and T in the trail solution u(x, t) = X(x)T (t) i.e.

u(x, t) = c1ekx.c2e
(k−1)t

2 =⇒ u(x, t) =Cekx+ (k−1)t
2 ,
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where C = c1c2 is another arbitrary constant.
Now putting t = 0 and using boundary condition u(x,0) = 6e−3x, we have

u(x,0) =Cekx+ (k−1).0
2 =⇒ 6e−3x =Cekx

Thus we have C = 6 and k =−3. Thus the required solution will be u(x, t) = 6e−3x−2y.

Exercise

Solve the following PDE:

(1.)
∂u
∂x

= 4
∂u
∂y

= 0. if u(0,y) = 8e−3y +4e−5y Ans. u(x,y) = 8e−3(4x+y)+4e−5(4x+y).

(2.) Show that z(x,y) = 4e−3x cos3y is a solution to the boundary value problem
∂ 2z
∂x2 +

∂ 2z
∂y2y

= 0,

if z(x,π/2) = 0 and z(x,0) = 4e−3x.

(3.)
∂ 2u
∂x2 = 2

∂u
∂ t

= 0 if u(x,0) = x(4− x)

(4.)
∂ 2z
∂x2 =

∂u
∂y

= 0 which satisfy the boundary conditions z = 0 when x = 0 and π; z = sin3x

when y = 0 and 0 < x < π .
Ans. z(x,y) = sin3xe−9y.

(5.) 2
∂ 2u
∂x2 =

∂u
∂ t

= 0 which satisfy the boundary conditions 0 < x < 3, u(0, t) = u(3, t) = 0 and

u(x,0) = 5sin4πx−3sin8πx+2sin10πx.
Ans. u(x, t) = 5e−32π2t sin4πx−3e−128π2t sin8πx+2e−200π2t sin10πx.

General solution of one-dimensional wave (vibrational) equation satisfying the given
boundary conditions

Consider one-dimensional wave equation

∂ 2u
∂x2 =

1
c2

∂ 2u
∂ t2 ,

with boundary conditions u(0, t) = 0 and u(a, t) = 0, ∀t.
Solution: Given that

∂ 2u
∂x2 =

1
c2

∂ 2u
∂ t2 , (1.84)

with boundary conditions u(0, t) = 0 and u(a, t) = 0.
Let the given equation has the solution of the form u(x, t) = X(x)T (t), where X is function of x alone

and T is function of t alone. Now
∂ 2u
∂x2 = X ′′(x)T (t) and

∂ 2u
∂ t2 = X(x)T ′′(t). Putting these values in

given equation, we have

X ′′T =
1
c2 XT ′′ =⇒ X ′′

X
=

T ′′

c2T
, (1.85)

Since x and t are independent variables, therefore above equation can only true if each side is equal
to the same constant. i.e.
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X ′′

X
=

T ′′

c2T
= k(constant) =⇒ X ′′− kX = 0 and T ′′− c2kT = 0

These are ordinary differential equation of second order with constant coefficient. Now to solve
these two equations X ′′− kX = 0 and T ′′− c2kT = 0, three cases arises:
Case-I When k = 0, then both equations reduces to

X ′′ = 0 =⇒ X = a1x+a2

and

T ′′ = 0 =⇒ T = a3t +a4.

Thus the required solution is

u(x, t) = (a1x+a2)(a3t +a4). (1.86)

Case-II When k > 0, we can take k = λ 2(say), then both equations reduces to

X ′′−λ 2X = 0 =⇒ the auxiliary equation is (m2−λ 2) = 0 =⇒ m =±λ . Therefore its solution
will be X = b1eλx +b2e−λx

and

T ′′− c2λ 2T = 0 =⇒ T = b3ecλ t +b4e−cλ t .

Thus the required solution is

u(x, t) = (b1eλx +b2e−λx)(b3ecλ t +b4e−cλ t). (1.87)

Case-III When k < 0, we can take k =−λ 2(say), then both equations reduces to

X ′′+λ 2X = 0 =⇒ the auxiliary equation is (m2 +λ 2) = 0 =⇒ m =±λ i. Therefore its solution
will be X = c1 cos(λx)+ c2 sin(λx)

and

T ′′+ c2λ 2T = 0 =⇒ T = c3 cos(cλ t)+ c4 sin(cλ t).

Thus the required solution is

u(x, t) = (c1 cos(λx)+ c2 sin(λx))(c3 cos(cλ t)+ c4 sin(cλ t)). (1.88)

Thus the equation (1.86), (1.87) and (1.88) are various possible solution of the given wave equation.
Given boundary conditions are u(0, t) = u(a, t) = 0 ∀t In view of the boundary condition, the
solution given by the equation (1.86) becomes

0 = a2(a3t +a4) and 0 = (a1a+a2)(a3t +a2)

=⇒ a2 = 0 and (a1a+a2) = 0 =⇒ a1 = a2 = 0

Hence u(x, t) = 0 ∀t. This is a trivial solution.
Again, in view of the boundary condition, the solution given by the equation (1.87) becomes
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0 = (b1 +b2)(b3ecλ t +b4e−cλ t) and 0 = (b1eλa +b2e−λa)(b3ecλ t +b4e−cλ t)

=⇒ (b1 +b2) = 0 and b1eλa +b2e−λa = 0 =⇒ b1 = b2 = 0

Hence u(x, t) = 0 ∀t. This is also a trivial solution.
Finally, in view of the boundary condition, the solution given by the equation (1.88) becomes

0 = c1(c3 cos(cλ t)+ c4 sin(cλ t)) and 0 = (c1 cos(λa)+ c2 sin(λa))(c3 cos(cλ t)+ c4 sin(cλ t))

=⇒ c1 = 0 and c2 sinλa = 0

Now for non-trivial solution of given wave equation, we can not take c2 = 0

=⇒ sinλa = 0 =⇒ λa = nπ n = 1,2,3, ...

Thus λ =
nπ

a
,n = 1,2,3, ...

Hence the solution given by the equation (1.88) becomes

un(x, t) = c2 sin
nπ

a

(
c3 cos

nπct
a

+ c4 sin
nπct

a

)
n = 1,2,3, ...

un(x, t) = sin
nπ

a

(
En cos

nπct
a

+Fn sin
nπct

a

)
n = 1,2,3, ...

Where En = (c2c3) and Fn = (c2c4) are new arbitrary constants.
Since the given wave equation is linear, its most general solution is obtained by applying the principle
of superposition, the required solution is

u(x, t) = ∑
∞
n=1 un(x, t) = ∑

∞
n=1 sin

nπ

a

(
En cos

nπct
a

+Fnsin
nπct

a

)
n = 1,2,3, ...

General solution of one-dimensional wave (vibrational) equation satisfying the given
boundary and initial conditions

Consider one-dimensional wave equation

∂ 2u
∂x2 =

1
c2

∂ 2u
∂ t2 ,

where u(x, t) is the deflection of the string. the solution of this equation shows how the string
moves. More precisely, if the ends of string are fixed at x = 0 and x = a, we have the two boundary
conditions.

u(0, t) = 0 and u(a, t) = 0, ∀t.

The form of the motion of the string will depend on the initial deflection (deflection at t = 0) and on
the intial velocity (velocity at t = 0). Denoting the initial deflection by f (x) and initial velocity by
g(x), we get two initial conditions

u(x,0) = f (x), 0≤ x≤ a

and
(

∂u
∂ t

)
t=0

= g(x), i.e. ut(x,0) = g(x) 0≤ x≤ a.
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Solution: Given that

∂ 2u
∂x2 =

1
c2

∂ 2u
∂ t2 , (1.89)

with boundary conditions u(0, t) = 0, u(a, t) = 0,u(x,0) = f (x) and ut(x,0) = g(x), 0≤ x≤ a.
Let the given equation has the solution of the form u(x, t) = X(x)T (t), where X is function of x alone

and T is function of t alone. Now
∂ 2u
∂x2 = X ′′(x)T (t) and

∂ 2u
∂ t2 = X(x)T ′′(t). Putting these values in

given equation, we have

X ′′T =
1
c2 XT ′′ =⇒ X ′′

X
=

T ′′

c2T
, (1.90)

Since x and t are independent variables, therefore above equation can only true if each side is equal
to the same constant. i.e.

X ′′

X
=

T ′′

c2T
= k(constant) =⇒ X ′′− kX = 0 and T ′′− c2kT = 0

These are ordinary differential equation of second order with constant coefficient. Now to solve
these two equations X ′′− kX = 0 and T ′′− c2kT = 0, three cases arises:
Case-I When k = 0, then both equations reduces to

X ′′ = 0 =⇒ X = a1x+a2

Using boundary conditions u(0, t) = 0 = u(a, t), the trial solution becomes

0 = X(0)T (t) and 0 = X(a)T (t).

Since T (t) = 0 =⇒ u(x, t) = 0, so we suppose that T (t) 6= 0. Then we have X(0) = 0 and
X(a) = 0. Now using these boundary conditions, the solution X = a1x+a2 becomes 0 = a1.0+a2
and 0 = a1.a+a2 =⇒ a1 = 0 = a2, so that X(x) = 0, which yields u(x, t) = 0. So we reject case-I,
when k = 0.
Case-II When k > 0, we can take k = λ 2(say), then first equations reduces to

X ′′−λ 2X = 0 =⇒ the auxiliary equation is (m2−λ 2) = 0 =⇒ m =±λ . Therefore its solution
will be X = b1eλx +b2e−λx

Using boundary conditions u(0, t) = 0 = u(a, t), the trial solution becomes

0 = X(0)T (t) and 0 = X(a)T (t).

Since T (t) = 0 =⇒ u(x, t) = 0, so we suppose that T (t) 6= 0. Then we have X(0) = 0 and X(a) = 0.
Now using these boundary conditions, the solution X = b1eλx+b2e−λx becomes 0= b1eλ .0+b2e−λ .0

and 0 = b1eλa +b2e−λa =⇒ 0 = b1 +b2 and b1eλa +b2e−λa =⇒ b1 = b2 = 0, so that X(x) = 0,
which yields u(x, t) = 0. So again we reject case-II, when k > 0.
Case-III When k < 0, we can take k =−λ 2(say), then first equations reduces to

X ′′+λ 2X = 0 =⇒ the auxiliary equation is (m2 +λ 2) = 0 =⇒ m =±λ i. Therefore its solution
will be X = c1 cos(λx)+ c2 sin(λx)

Using boundary conditions u(0, t) = 0 = u(a, t), the trial solution becomes
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0 = X(0)T (t) and 0 = X(a)T (t).

Since T (t) = 0 =⇒ u(x, t) = 0, so we suppose that T (t) 6= 0. Then we have X(0) = 0 and
X(a) = 0. Now using these boundary conditions, the solution X = c1 cos(λx)+ c2 sin(λx) becomes
0 = c1 cos(λ .0)+ c2 sin(λ .0) and 0 = c1 cos(λa)+ c2 sin(λa) =⇒ c1 = 0 and 0 = c2 sin(λa) = 0
Now for non-trivial solution of given wave equation, we can not take c2 = 0

=⇒ sinλa = 0 =⇒ λa = nπ n = 1,2,3, ...

Thus λ =
nπ

a
,n = 1,2,3, ...

Hence non-zero solution Xn(x) are given by

(c2)n sin
(nπx

a

)
(1.91)

Similarly the solution corresponding to the equation T ′′+λ 2T = 0 is

Tn(t) = (c3)n cos
nπct

a
+(c4)n sin

nπct
a

(1.92)

Hence the required solution is

u(x, t) =
∞

∑
n=1

sin
nπx

a

(
En cos

nπct
a

+Fn sin
nπct

a

)
(1.93)

Where En = ((c2)n(c3)) and Fn = ((c2)n(c4)n) are new arbitrary constants.
In order to find a solution which also satisfy u(x,0) = f (x) and ut(x,0) = g(x), We differentiate
equation (1.93) w.r.t. t,

∂u
∂ t

=
∞

∑
n=1

{
sin

nπx
a

(
−nπc

a
En sin

nπct
a

+
nπc

a
Fncos

nπct
a

)}
(1.94)

Put t = 0 in equation (1.93) and (1.94) and using initial equation u(x,0) = f (x) and ut(x,0) = g(x),
we get

f (x) =
∞

∑
n=1

En sin
nπx

a
(1.95)

and

g(x) =
∞

∑
n=1

nπcFn

a
sin

nπx
a

(1.96)

Which are Fourier sin series of expansion f (x) and g(x), respectively. Accordingly we get

En =
2
a

∫ a

0
f (x)sin

nπx
a

dx (1.97)

and

Fn =
2

nπc

∫ a

0
g(x)sin

nπx
a

dx (1.98)

Hence the required solution is given by the equation (1.93) where En and Fn are given by the equation
(1.97) and (1.98).
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� Example 1.64 Discuss D’Alembert’s solution of one dimensional wave equation. or
Show that the general solution of the wave equation

c2 ∂ 2u
∂x2 =

∂ 2u
∂ t2 is u(x, t) = φ(x+ ct)+ψ(x− ct),

where φ and ψ are arbitrary functions. �

Solution: Given equation is

∂ 2u
∂x2 =

1
c2

∂ 2u
∂ t2

Let v and w be two new independent variables such that

w = x+ ct and v = x− ct (1.99)

Now

∂u
∂x

=
∂u
∂w

∂w
∂x

+
∂u
∂v

∂v
∂x

Using equation (1.99), we have

∂u
∂x

=
∂u
∂w

+
∂u
∂v

So that
∂

∂x
=

∂

∂w
+

∂

∂v
(1.100)

Thus

∂ 2u
∂x2 =

∂

∂x

(
∂u
∂x

)
=⇒ ∂ 2u

∂x2 =

(
∂

∂w
+

∂

∂v

)(
∂u
∂w

+
∂u
∂v

)

∂ 2u
∂x2 =

∂ 2u
∂w2 +2

∂ 2u
∂w∂v

+
∂ 2u
∂v2 (1.101)

Again

∂u
∂ t

=
∂u
∂w

∂w
∂ t

+
∂u
∂v

∂v
∂ t

Using equation (1.99), we have

∂u
∂ t

= c
∂u
∂w
− c

∂u
∂v

So that
∂

∂ t
= c
(

∂

∂w
− ∂

∂v

)
(1.102)

Thus

∂ 2u
∂ t2 =

∂

∂ t

(
∂u
∂ t

)
=⇒ ∂ 2u

∂ t2 = c2
(

∂

∂w
− ∂

∂v

)(
∂u
∂w
− ∂u

∂v

)

∂ 2u
∂ t2 = c2

(
∂ 2u
∂w2 −2

∂ 2u
∂w∂v

+
∂ 2u
∂v2

)
=⇒ 1

c2
∂ 2u
∂ t2 =

(
∂ 2u
∂w2 −2

∂ 2u
∂w∂v

+
∂ 2u
∂v2

)
(1.103)
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Using (1.101) and (1.103) reduces to

∂ 2u
∂w2 +2

∂ 2u
∂w∂v

+
∂ 2u
∂v2 =

∂ 2u
∂w2 −2

∂ 2u
∂w∂v

+
∂ 2u
∂v2 =⇒ ∂ 2u

∂w∂v
= 0 (1.104)

∂

∂v

(
∂u
∂w

)
= 0 (1.105)

Integrating (1.105) w.r.t. v, we get

∂u
∂w

= F(w), (1.106)

where F is an arbitrary function of w.
Integrating (1.106) w.r.t. w, we get

u =
∫

F(w)dw+ψ(v),

where ψ is an function of v. Then

u = φ(w)+ψ(v), where φ(w) =
∫

F(w)dw

or

u = φ(x+ ct)+ψ(x− ct).

General solution of one-dimensional heat (diffusion) equation satisfying the given boundary
and initial conditions

Consider one-dimensional heat equation

∂ 2u
∂x2 =

1
k

∂u
∂ t

,

where u(x, t) is the temperature of the bar. If both the ends of a bar of length a are at temperature
zero and initial temperature is to be prescribed function f (x) in the bar, then find the temperature
at a subsequent time t. More precisely, the faces x = 0 and x = a of an infinite slab are maintained
at zero temperature. Given that the temperature u(x, t) = f (x) at t = 0. Find the temperature at a
subsequent time t.
Solution: Given that

∂ 2u
∂x2 =

1
k

∂u
∂ t

, (1.107)

with boundary conditions u(0, t) = 0, u(a, t) = 0.
The initial condition is given by u(x,0) = f (x), 0 < x < a
Let the given equation has the solution of the form u(x, t) = X(x)T (t), where X is function of x alone

and T is function of t alone. Now
∂ 2u
∂x2 = X ′′(x)T (t) and

∂u
∂ t

= X(x)T ′(t). Putting these values in
given equation, we have

X ′′T =
1
k

XT ′ =⇒ X ′′

X
=

T ′

kT
, (1.108)

Since x and t are independent variables, therefore above equation can only true if each side is equal
to the same constant. i.e.
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X ′′

X
=

T ′

kT
= µ(constant) =⇒ X ′′−µX = 0 and T ′−µkT = 0

These are ordinary differential equation of second order and first order with constant coefficient.
Now to solve these two equations

X ′′−µX = 0 (1.109)

and

T ′−µkT = 0. (1.110)

Now three cases arises:
Case-I When µ = 0, then both equations reduces to

X ′′ = 0 =⇒ X = a1x+a2

Using boundary conditions u(0, t) = 0 = u(a, t), the trial solution u(x, t) = X(x)T(t) becomes

0 = X(0)T (t) and 0 = X(a)T (t).

Since T (t) = 0 =⇒ u(x, t) = 0, so we suppose that T (t) 6= 0. Then we have X(0) = 0 and
X(a) = 0. Now using these boundary conditions, the solution X = a1x+a2 becomes 0 = a1.0+a2
and 0 = a1.a+a2 =⇒ a1 = 0 = a2, so that X(x) = 0, which yields u(x, t) = 0. So we reject case-I,
when µ = 0.
Case-II When µ > 0, we can take µ = λ 2(say), then equations X ′′−µX = 0 reduces to

X ′′−λ 2X = 0 =⇒ the auxiliary equation is (m2−λ 2) = 0 =⇒ m =±λ . Therefore its solution
will be X = b1eλx +b2e−λx

Using boundary conditions u(0, t) = 0 = u(a, t), the trial solution u(x, t)X(x)T (t) becomes

0 = X(0)T (t) and 0 = X(a)T (t).

Since T (t) = 0 =⇒ u(x, t) = 0, so we suppose that T (t) 6= 0. Then we have X(0) = 0 and X(a) = 0.
Now using these boundary conditions, the solution X = b1eλx+b2e−λx becomes 0= b1eλ .0+b2e−λ .0

and 0 = b1eλa +b2e−λa =⇒ 0 = b1 +b2 and b1eλa +b2e−λa =⇒ b1 = b2 = 0, so that X(x) = 0,
which yields u(x, t) = 0. So again we reject case-II, when µ > 0.
Case-III When µ < 0, we can take µ =−λ 2(say), then first equations reduces to

X ′′+λ 2X = 0 =⇒ the auxiliary equation is (m2 +λ 2) = 0 =⇒ m =±λ i. Therefore its solution
will be X = c1 cos(λx)+ c2 sin(λx)

Using boundary conditions u(0, t) = 0 = u(a, t), the trial solution becomes

0 = X(0)T (t) and 0 = X(a)T (t).

Since T (t) = 0 =⇒ u(x, t) = 0, so we suppose that T (t) 6= 0. Then we have X(0) = 0 and
X(a) = 0. Now using these boundary conditions, the solution X = c1 cos(λx)+ c2 sin(λx) becomes
0 = c1 cos(λ .0)+ c2 sin(λ .0) and 0 = c1 cos(λa)+ c2 sin(λa) =⇒ c1 = 0 and c2 sin(λa) = 0
Now for non-trivial solution of given wave equation, we can not take c2 = 0

=⇒ sinλa = 0 =⇒ λa = nπ n = 1,2,3, ...
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Thus λ =
nπ

a
,n = 1,2,3, ...

Hence non-zero solution Xn(x) are given by

Xn(x) = (c2)n sin
(nπx

a

)
(1.111)

Now the solution corresponding to the equation T ′+λ 2kT = 0 is

T ′

T
=−λ

2k (1.112)

By integrating we get

logT =−λ
2kt + logc3 =⇒ T = c3e−λ 2kt =⇒ T = c3e−(n

2π2/a2)kt (1.113)

Hence solution is Tn(t) = Dne−C2
n t , where Cn = (n2π2k/a2) and Dn = c3 are new arbitrary constants.

The general solution is

un(x, t) =
∞

∑
n=1

En sin
(nπx

a

)
e−C2

n t , (1.114)

where En = (c2)nDn is another new arbitrary constants.
Substituting t = 0 in (1.114) and using initial condition u(x,0) = f (x), we get

f (x) =
∞

∑
n=1

En sin
(nπx

a

)
(1.115)

Which are Fourier sin series of expansion f (x). Accordingly we get

En =
2
a

∫ a

0
f (x)sin

nπx
a

dx (1.116)

Hence the required solution is given by the equation (1.114) and En given by the equation (1.116).



Le
ctu

re
Not

es

By

G.K
.P

ra
jap

at
i

LN
JP

IT
, C

ha
pr

a

1.2 PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER 59

Laplace Equation

Definition 1.2.4 A two dimensional Laplace equation is defined as

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0 (1.117)

and a three dimensional Laplace equation is defined as

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 = 0 (1.118)

Laplace equation is also known as potential equation.
If the problems involves rectangular boundaries, we use the Laplace equation given by (1.117) and
(1.118).

Laplace’s Equation in plane polar coordinates

If the given boundary problem involves circular boundaries, we use Laplace’s equation in polar
coordinates (r,θ).

� Example 1.65 Transform the Laplace’s equation
∂ 2u
∂x2 +

∂ 2u
∂y2 = 0 into polar coordinates (r,θ). �

Solution: If (x,y) be the Cartesian coordinate’s of the point P whose polar coordinates are
(r,θ), then

x = r cosθ and y = r sinθ (1.119)

From (1.119)

r2 = x2 + y2 and θ = tan−1 y
x

(1.120)

From (1.120)

2r
∂ r
∂x

= 2x =⇒ ∂ r
∂x

=
x
r
= cosθ (1.121)

and

2r
∂ r
∂y

= 2y =⇒ ∂ r
∂y

=
y
r
= sinθ (1.122)

Also

∂θ

∂x
=

1
1+(y/x)2

(
− y

x2

)
=−r sinθ

r2 =−sinθ

r
(1.123)

and

∂θ

∂y
=

1
1+(y/x)2

(
1
x

)
=

r cosθ

r2 =
cosθ

r
(1.124)
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Now

∂u
∂x

=
∂u
∂ r

∂ r
∂x

+
∂u
∂θ

∂θ

∂x
=⇒ cosθ

∂u
∂ r
− sinθ

r
∂u
∂θ

=⇒ ∂

∂x
= cosθ

∂

∂ r
− sinθ

r
∂

∂θ

Therefore

∂ 2u
∂x2 =

∂

∂x

(
∂u
∂x

)
=

(
cosθ

∂

∂ r
− sinθ

r
∂

∂θ

)(
cosθ

∂u
∂ r
− sinθ

r
∂u
∂θ

)

= cosθ
∂

∂ r

(
cosθ

∂u
∂ r
− sinθ

r
∂u
∂θ

)
− sinθ

r
∂

∂θ

(
cosθ

∂u
∂ r
− sinθ

r
∂u
∂θ

)

= cosθ

[
cosθ

∂ 2u
∂ r2 − sinθ

(
− 1

r2
∂u
∂θ

+
1
r

∂ 2u
∂ r∂θ

)]
− sinθ

r

[
−sinθ

∂u
∂ r

+cosθ
∂ 2u

∂ r∂θ
− 1

r

(
cosθ

∂u
∂θ

+ sinθ
∂ 2u
∂θ 2

)]
Thus

∂ 2u
∂x2 = cos2

θ
∂ 2u
∂ r2 +

2sinθ cosθ

r2
∂u
∂θ
− 2sinθ cosθ

r
∂ 2u

∂ r∂θ
+

sin2
θ

r
∂u
∂ r

+
sin2

θ

r2
∂ 2u
∂θ 2 (1.125)

Again

∂u
∂y

=
∂u
∂ r

∂ r
∂y

+
∂u
∂θ

∂θ

∂y
=⇒ sinθ

∂u
∂ r

+
cosθ

r
∂u
∂θ

=⇒ ∂

∂y
= sinθ

∂

∂ r
+

cosθ

r
∂

∂θ

Therefore

∂ 2u
∂y2 =

∂

∂y

(
∂u
∂y

)
=

(
sinθ

∂

∂ r
+

cosθ

r
∂

∂θ

)(
sinθ

∂u
∂ r

+
cosθ

r
∂u
∂θ

)

= sinθ
∂

∂ r

(
sinθ

∂u
∂ r

+
cosθ

r
∂u
∂θ

)
+

cosθ

r
∂

∂θ

(
sinθ

∂u
∂ r

+
cosθ

r
∂u
∂θ

)

= sinθ

[
sinθ

∂ 2u
∂ r2 + cosθ

(
− 1

r2
∂u
∂θ

+
1
r

∂ 2u
∂ r∂θ

)]
+

cosθ

r

[
cosθ

∂u
∂ r

+sinθ
∂ 2u

∂ r∂θ
+

1
r

(
−sinθ

∂u
∂θ

+ cosθ
∂ 2u
∂θ 2

)]
Thus

∂ 2u
∂y2 = sin2

θ
∂ 2u
∂ r2 −

2sinθ cosθ

r2
∂u
∂θ

+
2sinθ cosθ

r
∂ 2u

∂ r∂θ
+

cos2 θ

r
∂u
∂ r

+
cos2 θ

r2
∂ 2u
∂θ 2 (1.126)

Adding (1.125) and (1.126)

∂ 2u
∂x2 +

∂ 2u
∂y2 =

∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2

Hence Laplace equation in polar coordinates is

∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0
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Laplace’s equation in cylindrical coordinates

If the given boundary problem involves cylindrical boundaries, we use Laplace’s equation in cylin-
drical coordinates (r,θ ,z).

� Example 1.66 Transform the Laplace’s equation
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 = 0 into polar coordinates

(r,θ ,z). �

Solution:

If (x,y,z) be the Cartesian coordinate’s of the point P whose cylindrical coordinates are (r,θ ,z),
then we know that

x = r cosθ , y = r sinθ and z = z (1.127)

With x = r cosθ , and y = r sinθ , proceed as in the Example (1.65) and prove that

∂ 2u
∂x2 +

∂ 2u
∂y2 =

∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 (1.128)

Adding
∂ 2u
∂ z2 on both side of (1.128), we get

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 =

∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 +

∂ 2u
∂ z2 (1.129)

Hence the Laplace equation
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 = 0 reduces to

∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 +

∂ 2u
∂ z2 = 0 (1.130)

Laplace’s Equation in spherical coordinates

If the given boundary problem involves spherical boundaries, we use Laplace’s equation in spherical
coordinates (r,θ ,φ).

� Example 1.67 Transform the Laplace’s equation
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 = 0 into spherical coordinates

(r,θ ,φ). �
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Solution: If (x,y,z) be the Cartesian coordinate’s of the point P whose spherical coordinates
are (r,θ ,φ), then

x = r sinθ cosφ and y = r sinθ sinφ and z = r cosθ (1.131)

From (1.131)

r2 = x2 + y2 + z2 and tanθ =
(x2 + y2)1/2

z
and tanφ =

y
x

r2 = x2+y2+ z2 and θ = tan−1

(
(x2 + y2)1/2

z

)
and φ = tan−1

(y
x

)
(1.132)

From (1.132)

2r
∂ r
∂x

= 2x =⇒ ∂ r
∂x

=
x
r
= sinθ cosφ , (1.133)

2r
∂ r
∂y

= 2y =⇒ ∂ r
∂y

=
y
r
= sinθ sinφ (1.134)

And

2r
∂ r
∂ z

= 2z =⇒ ∂ r
∂ z

=
z
r
= cosθ (1.135)

Also

∂θ

∂x
=

1

1+

(
(x2 + y2)1/2

z

)2

(
1
z

1
2

1
(x2 + y2)1/2 2x

)
=

cosθ cosφ

r
, (1.136)

∂θ

∂y
=

cosθ sinφ

r
, and

∂θ

∂ z
=−sinθ

r
(1.137)

And

∂φ

∂x
=− sinφ

r sinθ
, and

∂φ

∂y
=

cosφ

r sinθ
and

∂φ

∂ z
= 0 (1.138)

Now

∂u
∂x

=
∂u
∂ r

∂ r
∂x

+
∂u
∂θ

∂θ

∂x
+

∂u
∂φ

∂φ

∂x
=⇒ sinθ cosφ

∂u
∂ r

+
cosθ cosφ

r
∂u
∂θ
− sinφ

r sinθ

∂u
∂φ

=⇒ ∂

∂x
= sinθ cosφ

∂

∂ r
+

cosθ cosφ

r
∂

∂θ
− sinφ

r sinθ

∂

∂φ
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1.2 PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER 63

Therefore

∂ 2u
∂x2 =

∂

∂x

(
∂u
∂x

)
=

(
sinθ cosφ

∂

∂ r
+

cosθ cosφ

r
∂

∂θ
− sinφ

r sinθ

∂

∂φ

)(
sinθ cosφ

∂u
∂ r

+
cosθ cosφ

r
∂u
∂θ
− sinφ

r sinθ

∂u
∂φ

)

= sinθ cosφ
∂

∂ r

(
sinθ cosφ

∂u
∂ r

+
cosθ cosφ

r
∂u
∂θ
− sinφ

r sinθ

∂u
∂φ

)
+

cosθ cosφ

r
∂

∂θ

(
sinθ cosφ

∂u
∂ r

+
cosθ cosφ

r
∂u
∂θ
− sinφ

r sinθ

∂u
∂φ

)
− sinφ

r sinθ

∂

∂φ

(
sinθ cosφ

∂u
∂ r

+
cosθ cosφ

r
∂u
∂θ
− sinφ

r sinθ

∂u
∂φ

)
Thus

∂ 2u
∂x2 = sin2

θ cos2
φ

∂ 2u
∂ r2 +

2sinθ cosθ cos2 φ

r
∂ 2u

∂ r∂θ
− 2sinθ cosθ cos2 φ

r2
∂u
∂θ
− 2sinφ cosφ

r
∂ 2u

∂ r∂φ

+
sinφ cosφ

r2
∂u
∂φ

+
cos2 θ cos2 φ

r
∂u
∂ r

+
cos2 θ cos2 φ

r2
∂ 2u
∂θ 2 −

2cosθ sinφ cosφ

r2 sinθ

∂ 2u
∂θ∂φ

+
cosθ sinφ cosφ

r2 sin2
θ

∂u
∂φ

+
sin2

φ

r
∂u
∂ r

+
cosθ sin2

φ

r2 sinθ

∂u
∂θ

+
sin2

φ

r2 sin2
θ

∂ 2u
∂φ 2

+
sinφ cosφ

r2 sin2
θ

∂u
∂φ

.(1.139)

Again

∂u
∂y

=
∂u
∂ r

∂ r
∂y

+
∂u
∂θ

∂θ

∂y
+

∂u
∂φ

∂φ

∂y
=⇒ sinθ sinφ

∂u
∂ r

+
cosθ sinφ

r
∂u
∂θ

+
cosφ

r sinθ

∂u
∂φ

=⇒ ∂

∂y
= sinθ sinφ

∂

∂ r
+

cosθ sinφ

r
∂

∂θ
+

cosφ

r sinθ

∂

∂φ

Therefore

∂ 2u
∂y2 =

∂

∂y

(
∂u
∂y

)
=

(
sinθ sinφ

∂

∂ r
+

cosθ sinφ

r
∂

∂θ
+

cosφ

r sinθ

∂

∂φ

)(
sinθ sinφ

∂u
∂ r

+
cosθ sinφ

r
∂u
∂θ
− cosφ

r sinθ

∂u
∂φ

)

= sinθ sinφ
∂

∂ r

(
sinθ sinφ

∂u
∂ r

+
cosθ sinφ

r
∂u
∂θ
− cosφ

r sinθ

∂u
∂φ

)
+

cosθ sinφ

r
∂

∂θ

(
sinθ sinφ

∂u
∂ r

+
cosθ sinφ

r
∂u
∂θ
− cosφ

r sinθ

∂u
∂φ

)
+

cosφ

r sinθ

∂

∂φ

(
sinθ sinφ

∂u
∂ r

+
cosθ sinφ

r
∂u
∂θ
− cosφ

r sinθ

∂u
∂φ

)
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64 Chapter 1. Partial Differential Equations

Thus

∂ 2u
∂y2 = sin2

θ sin2
φ

∂ 2u
∂ r2 +

2sinθ cosθ sin2
φ

r
∂ 2u

∂ r∂θ
− 2sinθ cosθ sin2

φ

r2
∂u
∂θ

+
2sinφ cosφ

r
∂ 2u

∂ r∂φ

−sinφ cosφ

r2
∂u
∂φ

+
cos2 θ sin2

φ

r
∂u
∂ r

+
cos2 θ sin2

φ

r2
∂ 2u
∂θ 2 +

2cosθ sinφ cosφ

r2 sinθ

∂ 2u
∂θ∂φ

−cosθ sinφ cosφ

r2 sin2
θ

∂u
∂φ

+
cos2 φ

r
∂u
∂ r

+
cosθ cos2 φ

r2 sin2
θ

∂u
∂φ

+
cos2 φ

r2 sin2
θ

∂ 2u
∂φ 2

−sinφ cosφ

r2 sin2
θ

∂u
∂φ

.(1.140)

Finally

∂u
∂ z

=
∂u
∂ r

∂ r
∂ z

+
∂u
∂θ

∂θ

∂ z
+

∂u
∂φ

∂φ

∂ z
=⇒ cosθ

∂u
∂ r
− sinθ

r
∂u
∂θ

=⇒ ∂

∂ z
= cosθ

∂

∂ r
− sinθ

r
∂

∂θ

Therefore

∂ 2u
∂ z2 =

∂

∂ z

(
∂u
∂ z

)
=

(
cosθ

∂

∂ r
− sinθ

r
∂

∂θ

)(
cosθ

∂u
∂ r
− sinθ

r
∂u
∂θ

)
Thus

∂ 2u
∂ z2 = cos2

θ
∂ 2u
∂ r2 −

2sinθ cosθ

r
∂ 2u

∂ r∂θ
+

2sinθ cosθ

r2
∂u
∂θ

+
sin2

θ

r
∂u
∂ r

+
sin2

θ

r2
∂ 2u
∂θ 2 . (1.141)

Adding (1.139), (1.140) and (1.141)

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 =

∂ 2u
∂ r2 +

2
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 +

cotθ

r2
∂u
∂θ

+
1

r2 sin2
θ

∂ 2u
∂φ 2 .

Hence Laplace equation in spherical coordinates is

∂ 2u
∂ r2 +

2
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 +

cotθ

r2
∂u
∂θ

+
1

r2 sin2
θ

∂ 2u
∂φ 2 = 0
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2. Complex Analysis

2.1 Introduction

Complex analysis is the study of functions that live in the complex plane, that is, functions that have
complex arguments and complex outputs.This course provides an introduction to complex analysis
which is the theory of complex functions of a complex variable. We will start by introducing the
complex plane, along with the algebra and geometry of complex numbers, and then we will make
our way via differentiation, integration, complex dynamics, power series representation and Laurent
series into territories at the edge of what is known today.

2.2 COMPLEX VARIABLE

x+ iy is a complex variable and it is denoted by z.
(1) z = x+ iy where i =

√
−1 (Cartesian form)

(2) z = r(cosθ + isinθ) (Polar form)
(3) z = reiθ (Exponential form)

2.3 FUNCTIONS OF A COMPLEX VARIABLE

f (z) is a function of a complex variable z and is denoted by w.

w = f (z)
w = u+ iv

where u and v are the real and imaginary parts of f (z).

2.4 NEIGHBORHOOD OF Z0

Let z0 is a point in the complex plane and let z be any positive number, then the set of points z such
that
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66 Chapter 2. Complex Analysis

|z− z0|< ε

is called ε−neighbourhood of z0.

2.5 LIMIT OF A FUNCTION OF A COMPLEX VARIABLE
Let f (z) be a single valued function defined at all points in some neighbourhood of point z0. Then
f (z) is said to have the limit l as z approaches z0 along any path if given an arbitrary real number
ε > 0, however small there exists a real number δ > 0, such that

| f (z)− l|< ε whenever 0 < |z− z0|< δ

i.e. for every z 6= z0 in δ -disc (dotted) of z-plane, f (z) has a value lying in the ε-disc of w-plane.
In symbolic form, lim

z→z0
f(z)=l.

Note: (I) δ usually depends upon ε .
(II) z→ z0 implies that z approaches z0
along any path.
The limits must be independent of the
manner in which z approaches z0 If we
get two different limits as z→ z0 along
two different paths then limits does not
exist.

� Example 2.1 Prove that lim
z→1−i

z2 +4z+3
z+1

= 4− i

Solution: lim
z→1−i

(z+1)(z+3)
z+1

= lim
z→1−i

(z+3) = (1− i)+3 = 4− i �

� Example 2.2 Show that lim
z→0

z
|z|

does not exist.

Solution: lim
z→0

z
|z|

= lim
(x,y)→(0,0)

x+ iy√
x2 + y2

Let y = mx, = lim
x→0

x+ imx√
x2 +(mx)2

= lim
x→0

1+ im√
1+(m)2

=
1+ im√
1+m2

The value of
1+ im√
1+m2

are different for different value of m. Hence the limit does not exist. �
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2.6 Continuity 67

� Example 2.3 Show that lim
z→0

z
z̄

does not exist.

Solution: Case-1. lim
z→0

z
z̄
= lim

(x,y)→(0,0)

x+ iy
x− iy

= lim
x→0

[
lim
y→0

x+ iy
x− iy

]
= lim

x→0

x
x
= 1

Again Case-2. lim
z→0

z
z̄
= lim

(x,y)→(0,0)

x+ iy
x− iy

= lim
y→0

[
lim
x→0

x+ iy
x− iy

]
= lim

y→0

iy
−iy

=−1

As z→ 0 along two different paths, we get different limits. Hence the limit does not exist. �

Exercise

Show that the limit does not exist

1. lim
z→0

Im(z)3

Re(z)3 2. lim
z→0

z
(z̄)2 3. lim

z→0

Re(z)2

Im(z)

Find the limit of the following

5. lim
z→0

Re(z)2

|z|
Ans. 0 6. lim

z→1+i

2z3

(Im(z)2 Ans. 2(−1+ i) 7. lim
z→0

z2 +6z+3
z2 +2z+2

Ans. 3/2.

2.6 Continuity
The function f (z) of a complex variable z is said to be continuous at the point z0 if for any given
positive number ε , we can find a number δ such that | f (z)− f (z0)|< ε for all points z of the domain
satisfying

|z− z0|< δ

f (z) is said to be continuous at z = z0 if

lim
z→0

f (z) = f (z0)

� Example 2.4 Examine the continuity of the function

f (z) =


z3− iz2 + z− i

z− i
,z 6= i

0, z = i

at z = i �

Solution:

lim
z→i

f (z) = lim
z→i

z3− iz2 + z− i
z− i

= lim
z→i

z2(z− i)+1(z− i)
z− i

= lim
z→i

(z2 +1)(z− i)
z− i

= lim
z→i

(z2 +1) = 0

Also, we have f (i) = 0. Thus

= lim
z→i

f (z) = f (i)

Hence f (z) is continuous at z = i.

� Example 2.5 Show that the function f (z) defined by
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68 Chapter 2. Complex Analysis

f (z) =


Re(z)

z
,z 6= 0

0, z = 0

is not continuous at z = 0. �

Solution:Here

lim
z→0

f (z) = lim
z→0

Re(z)
z

= lim
(x,y)→(0,0)

x
x+ iy

= lim
x→0

[
lim
y→0

x
x+ iy

]
= lim

x→0

x
x
= 1

Also

lim
z→0

f (z) = lim
z→0

Re(z)
z

= lim
(x,y)→(0,0)

x
x+ iy

= lim
y→0

[
lim
x→0

x
x+ iy

]
= lim

y→0

0
0+ iy

= 0

AS lim
z→0

for two different paths, limit have two different values. So the limit does not exist. Thus f (z)

is not continuous at z = 0.

Exercise

Examine the continuity of the following functions

(1.) f (z) =


Im(z)
|z|

,z 6= 0

0, z = 0
at z = 0. Ans. Not Continuous

(2.) f (z) =
z2 +3z+4

z2 + i
at z = 1− i Ans. Continuous

2.7 DIFFERENTIABILITY

Let f (z) be a single valued function of
the variable z, then

f ′(z) = lim
δ z→0

f (z+δ z)− f (z)
δ z

provided that the limit exists and is
independent of the path along which
δ z→ 0. Let P be a fixed point and Q
be a neighbouring point. The point Q
may approach P along any straight line
or curved path.

� Example 2.6 If f (z) =


x3y(y− ix)

x6 + y2 ,z 6= 0

0, z = 0
Then discuss

d f
dz

at z = 0. �

Solution: If z→ 0 along radius vector y = mx.
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2.8 Analytic Function 69

f ′(0) = lim
z→0

f (z)− f (0)
z

= lim
z→0


x3y(y− ix)

x6 + y2 −0

x+ iy

= lim
z→0

[
−ix3y(x+ iy)

(x6 + y2)(x+ iy)

]

= lim
z→0

[
−ix3y

(x6 + y2)

]
= lim

x→0

[
−ix3(mx)
(x6 +m2x2)

]
= lim

x→0

[
−imx2

(x4 +m2)

]
= 0

But along y = x3

= lim
z→0

f (z)− f (0)
z

= lim
z→0

[
−ix3(y)
(x6 + y2)

]
= lim

x→0

[
−ix3(x3)

(x6 +(x3)2)

]
=− i

2

In different paths we get different values of
d f
dz

i.e. 0 and − i
2

. In such a case, the function is not

differentiable at z = 0.

� Example 2.7 Prove that the function f (z) = |z|2 is continuous everywhere but no where differen-
tiable except at the origin. �

2.8 Analytic Function
Definition 2.8.1 A function f (z) is said to be analytic at a point z0, if f is differentiable not only
at z0 but at every point of some neighbourhood of z0.

A function f (z) is analytic in a domain if it is analytic at every point of the domain.

The point at which the function is not differentiable is called a singular point of the function.

An analytic function is also known as “holomorphic”, “regular”, “monogenic”.

Definition 2.8.2 Entire Function: A function which is analytic everywhere (for all z in the
complex plane) is known as an entire function.

� Example 2.8 1. Polynomials rational functions are entire.
2. |z|2 is differentiable only at z = 0. So it is no where analytic. �

R
1. An entire is always analytic, differentiable and continuous function. But converse is not

true.
2. Analytic function is always differentiable and continuous. But converse is not true.
3. A differentiable function is always continuous. But converse is not true

2.9 THE NECESSARY CONDITION FOR F(Z) TO BE ANALYTIC

Theorem 2.9.1 The necessary conditions for a function f (z) = u+ iv to be analytic at all the
points in a region R are
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70 Chapter 2. Complex Analysis

∂u
∂x

=
∂v
∂y

and
∂u
∂y

=−∂v
∂x

provided
∂u
∂x

,
∂v
∂y

,
∂u
∂y

, and
∂v
∂x

exists.

Definition 2.9.1 Cauchy Riemann equations: The equation

∂u
∂x

=
∂v
∂y

and
∂u
∂y

=−∂v
∂x

is known as Cauchy Riemann equations.

2.10 SUFFICIENT CONDITION FOR F(Z) TO BE ANALYTIC

Theorem 2.10.1 The sufficient condition for a function f (z) = u+ iv to be analytic at all the
points in a region R are

1.
∂u
∂x

=
∂v
∂y

and
∂u
∂y

=−∂v
∂x

2.
∂u
∂x

,
∂v
∂y

,
∂u
∂y

, and
∂v
∂x

are continuous functions of x and y in region R.

� Example 2.9 Show that the function ex(cosy+ isiny) is an analytic function, find its derivative.�

Solution: Let ex(cosy+ isiny) = u+ iv.
So, ex cosy = u and ex siny = v then

∂u
∂x

= ex cosy,
∂u
∂y

=−ex siny,
∂v
∂x

= ex siny, and
∂v
∂y

= ex cosy

Here we see that

∂u
∂x

=
∂v
∂y

and
∂u
∂y

=−∂v
∂x

Thus are C− R equations and are satisfied and the partial derivatives are continuous. Hence,
ex(cosy+ isiny) is analytic.
The derivative of the function ex(cosy+ isiny) is

f ′(z) = u′+ iv′ =
∂u
∂x

+ i
∂v
∂x

ex cosy+ iex siny = ex(cosy+ isiny) = ex.eiy = ex+iy = ez

� Example 2.10 Discuss the analyticity of the function f (z) = |z|2. �

Solution: f (z) = |z|2 = zz̄ = (x+ iy)(x− iy) = x2− i2y2 = x2 + y2

f (z) = x2 + y2 = u+ iv =⇒ u = x2 + y2,v = 0

At origin,

∂u
∂x

= lim
h→0

u(0+h,0)−u(0,0)
h

= lim
h→0

h2

h
= 0

∂u
∂y

= lim
k→0

u(0,0+ k)−u(0,0)
k

= lim
k→0

k2

k
= 0
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2.10 SUFFICIENT CONDITION FOR F(Z) TO BE ANALYTIC 71

Also
∂v
∂x

= lim
h→0

v(0+h,0)− v(0,0)
h

= 0

∂v
∂y

= lim
k→0

v(0,0+ k)− v(0,0)
k

= 0

Thus the C−R equations
∂u
∂x

=
∂v
∂y

and
∂u
∂y

= −∂v
∂x

are satisfied and the partial derivatives are

continuous. Hence, f (z) = |z|2 is analytic at origin.

� Example 2.11 Show that the function f (z) = u+ iv, where

f (z) =


x3(1+ i)− y3(1− i)

x2 + y2 ,z 6= 0

0, z = 0

satisfies the Cauchy-Riemann equations at z = 0. Is the function analytic at z = 0? Justify your
answer. �

Solution: f (z) =
x3(1+ i)− y3(1− i)

x2 + y2 = u+ iv

u =
x3− y3

x2 + y2 , and v =
x3 + y3

x2 + y2

At origin,

∂u
∂x

= lim
h→0

u(0+h,0)−u(0,0)
h

= lim
h→0

h3/h2

h
= 1

∂u
∂y

= lim
k→0

u(0,0+ k)−u(0,0)
k

= lim
k→0

−k3/k2

k
=−1

Also
∂v
∂x

= lim
h→0

v(0+h,0)− v(0,0)
h

= lim
h→0

h3/h2

h
= 1

∂v
∂y

= lim
k→0

v(0,0+ k)− v(0,0)
k

= lim
k→0

k3/k2

k
= 1

Thus the C−R equations
∂u
∂x

=
∂v
∂y

and
∂u
∂y

=−∂v
∂x

are satisfied. Again for derivatives

f ′(0) = lim
z→0

f (z+0)− f (0)
z

= lim
z→0


x3(1+ i)− y3(1− i)

x2 + y2 −0

x+ iy

= lim
z→0

[
x3(1+ i)− y3(1− i)
(x2 + y2)(x+ iy)

]

Now let z→ 0 along y = mx, then

= lim
x→0

[
x3(1+ i)− (mx)3(1− i)
(x2 +(mx)2)(x+ i(mx))

]
= lim

x→0

[
(1+ i)− (m)3(1− i)
(1+(m)2)(1+ im)

]
=

[
(1+ i)− (m)3(1− i)
(1+(m)2)(1+ im)

]
Which depends on the value of m. So for different paths we get different values of

d f
dz

. In such a

case, the function is not differentiable at z = 0. Hence given function is not analytic at z = 0.
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72 Chapter 2. Complex Analysis

2.11 C-R EQUATIONS IN POLAR FORM
The C−R equations in polar form is

∂u
∂ r

=
1
r

∂v
∂θ

and
∂u
∂θ

=−r
∂v
∂ r

Exercise

Determine which of the following functions are analytic:

(1.) x2 + iy2 Ans. Analytic at all points y = x
(2.) 2xy+ i(x2˘y2) Ans. Not analytic
(3.) sinxcoshy+ icosxsinhy Ans. Yes, analytic
(4.) Show the function of z̄ is not analytic any where.

(5.) Discuss the analyticity of the function f (z) =


x2y(y− ix)

x4 + y2 ,z 6= 0

0, z = 0
at z = 0.

2.12 Harmonic Function
Definition 2.12.1 Any function which satisfies the Laplace’s equation

∂ 2 f
∂x2 +

∂ 2 f
∂y2 = 0

is known as a harmonic function.

Theorem 2.12.1 If f (z) = u+ iv is an analytic function, then u and v are both harmonic functions.
Such functions u and v are called Conjugate harmonic functions if u + iv is also analytic
function.

� Example 2.12 Prove that u = x2−y2 and v =
y

x2 + y2 are harmonic functions of (x,y), but are not

harmonic conjugates. �

Solution:

∂u
∂x

= 2x ,
∂ 2u
∂x2 = 2,

∂u
∂y

=−2y,
∂ 2u
∂y2 =−2

Thus

∂ 2u
∂x2 +

∂ 2u
∂y2 = 2−2 = 0.

u(x,y) satisfies Laplace equation, hence u(x,y) is harmonic.
Now

∂v
∂x

=
−2xy

(x2 + y2)2 ,
∂ 2v
∂x2 =

(x2 + y2)2(−2y)− (−2xy)2(x2 + y2)(2x)
(x2 + y2)4

=
(x2 + y2)(−2y)− (−2xy)2(2x)

(x2 + y2)3 =
(6x2y−2y3)

(x2 + y2)3
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∂v
∂y

=
(x2 + y2).1− y.2(x2 + y2)(2y)

(x2 + y2)2 =
(x2− y2)

(x2 + y2)2 ,

=
∂ 2v
∂y2 =

(x2 + y2)2(−2y)− (x2− y2)2(x2 + y2)(2y)
(x2 + y2)4 =

(x2 + y2)(−2y)− (x2− y2)2(2y)
(x2 + y2)3 =

(−6x2y+2y3)

(x2 + y2)3

Thus

∂ 2v
∂x2 +

∂ 2v
∂y2 =

(
(6x2y−2y3)

(x2 + y2)3

)
+

(
(−6x2y+2y3)

(x2 + y2)3

)
= 0.

v(x,y) satisfies Laplace equation, hence v(x,y) is harmonic.
But

∂u
∂x
6= ∂v

∂y
and

∂u
∂y
6=−∂v

∂x
.

Therefore u and v are not harmonic conjugates.

2.13 METHOD TO FIND THE CONJUGATE FUNCTION
Case I. Given. If f (z) = u+ iv, and u is known.
Claim: We have to find conjugation function v.

� Example 2.13 If w = φ + iψ represents the complex potential for an electric field and

ψ = x2− y2 +
x

x2 + y2

determine the function φ . �

Solution: We have, w = φ + iψ and ψ = x2− y2 +
x

x2 + y2 so that

∂ψ

∂x
= 2x+

(x2 + y2).1− x.(2x)
(x2 + y2)2 = 2x+

(y2− x2)

(x2 + y2)2

∂ψ

∂y
=−2y+

−x.(2y)
(x2 + y2)2 =−2y+

−2xy
(x2 + y2)2

We know that

dφ =
∂φ

∂x
dx+

∂φ

∂y
dy

Using C−R equations
∂φ

∂x
=

∂ψ

∂y
, and

∂φ

∂y
=−∂ψ

∂x

dφ =
∂ψ

∂y
dx− ∂ψ

∂x
dy

Putting the values of
∂ψ

∂x
and

∂ψ

∂y
, we get
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dφ =

(
−2y+

−2xy
(x2 + y2)2

)
dx−

(
2x+

(y2− x2)

(x2 + y2)2

)
dy

The R.H.S. is an exact differential equation of the form Mdx+Ndy. Hence its solution is

dφ =
∫ (
−2y+

−2xy
(x2 + y2)2

)
dx =⇒ φ =−2xy+

y
(x2 + y2)

+ c

� Example 2.14 Prove that u = x2− y2− 2xy− 2x+ 3y is harmonic. Find a function v such that
f (z) = u+ iv is analytic. Also express f (z) in terms of z. �

Solution: We have, u = x2− y2−2xy−2x+3y so that

∂u
∂x

= 2x−2y−2 and
∂ 2u
∂x2 = 2

∂u
∂y

=−2y−2x+3 and
∂ 2u
∂y2 =−2

Thus
∂ 2u
∂x2 +

∂ 2u
∂y2 = 2−2 = 0.

u(x,y) satisfies Laplace equation, hence u(x,y) is harmonic.
We know that

dv =
∂v
∂x

dx+
∂v
∂y

dy

Using C−R equations
∂u
∂x

=
∂v
∂y

, and
∂u
∂y

=−∂v
∂x

dv =−∂u
∂y

dx+
∂u
∂x

dy

Putting the values of
∂u
∂x

and
∂u
∂y

, we get

dv =−(−2y−2x+3)dx+(2x−2y−2)dy

The R.H.S. is an exact differential equation of the form Mdx+Ndy. Hence its solution is

v =−
∫
(−2y−2x+3)dx+

∫
(−2y−2)dy =⇒ v = 2xy+ x2−3x− y2−2y+ c

Now,

f (z) = u+ iv

= (x2− y2−2xy−2x+3y)+ i(2xy+ x2−3x− y2−2y+ c)

= (x2− y2 +2ixy)+(ix2− iy2−2xy)− (2+3i)x− i(2+3i)y+ ic

= (x2− y2 +2ixy)+ i(x2− y2 +2ixy)− (2+3i)x− i(2+3i)y+ ic

= (x+ iy)2 + i(x+ iy)2− (2+3i)(x+ iy)+ ic

= z2 + iz2− (2+3i)z+ ic

= (1+ i)z2− (2+3i)z+ ic

Which is the required expression of f (z) in terms of z.
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� Example 2.15 Let f (z) = u(r,θ) + iv(r,θ) be an analytic function and u = −r3 sin3θ . then
construct the corresponding analytic function f (z) in terms of z. �

Solution: We have u =−r3 sin3θ . Then

∂u
∂ r

=−3r2 sin3θ and
∂u
∂θ

=−3r3 cos3θ

We know that

dv =
∂v
∂ r

dr+
∂v
∂θ

dθ

Using C−R equations in polar form
∂u
∂ r

=
1
r

∂v
∂θ

, and
∂u
∂θ

=−r
∂v
∂ r

dv =−1
r

∂u
∂θ

dr+ r
∂u
∂ r

dθ

Putting the values of
∂u
∂ r

and
∂u
∂θ

, we get

dv =−1
r
(−3r3 cos3θ)dr+ r(−3r2 sin3θ)dθ

dv = (3r2 cos3θ)dr− (3r3 sin3θ)dθ

The R.H.S. is an exact differential equation of the form Mdr+Ndθ . Hence its solution is

v =
∫
(3r2 cos3θ)dr+ c =⇒ v = r3 cos3θ + c

Now,

f (z) = u+ iv =−r3 sin3θ + ir3 cos3θ + ic = ir3(cos3θ + isin3θ)+ ic

f (z) = ir3e3iθ + ic =⇒ f (z) = i
(
reiθ
)3

+ ic = iz3 + ic

� Example 2.16 If u− v = (x− y)(x2 + 4xy+ y2) and f (z) = u+ iv is an analytic function of
z = x+ iy, find f (z) in terms of z. �

Solution: u+ iv = f (z) =⇒ iu− v = i f (z)
Adding these, (u− v)+ i(u+ v) = (1+ i) f (z) Let

U + iV = (1+ i) f (z) where U = u− v and V = u+ v

F(z) = (1+ i) f (z)

U = u− v = (x− y)(x2 +4xy+ y2) = x3 +3x2y−3xy2− y3

∂U
∂x

= 3x2 +6xy−3y2 and
∂U
∂y

= 3x2−6xy−3y2

We know that

dV =
∂V
∂x

dx+
∂V
∂y

dy
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Using C−R equations
∂U
∂x

=
∂V
∂y

, and
∂U
∂y

=−∂V
∂x

dV =−∂U
∂y

dx+
∂U
∂x

dy

Putting the values of
∂U
∂x

and
∂U
∂y

, we get

dV =−(3x2−6xy−3y2)dx+(3x2 +6xy−3y2)dy

The R.H.S. is an exact differential equation of the form Mdx+Ndy. Hence its solution is

V =−
∫
(3x2−6xy−3y2)dx+

∫
(−3y2)dy =⇒ V =−x3 +3x2y+3xy2− y3 + c

Now,

F(z) = U + iV

= (x3 +3x2y−3xy2− y3)+ i(−x3 +3x2y+3xy2− y3)+ ic

= (1− i)x3 +(1+ i)3x2y− (1− i)3xy2− (1+ i)y3 + ic

= (1− i)x3 + i(1− i)3x2y− (1− i)3xy2− i(1− i)y3 + ic

= (1− i)[x3 +3ix2y−3xy2− iy3]+ ic

= (1− i)(x+ iy)3 + ic

= (1− i)z3 + ic

Thus

(1+ i) f (z) = (1− i)z3 + ic,

f (z) =
(1− i)z3

(1+ i)
+

ic
(1+ i)

,

Exercise

1.

2.14 MILNE THOMSON METHOD (TO CONSTRUCT AN ANALYTIC FUNCTION)
WORKING RULE: TO CONSTRUCT AN ANALYTIC FUNCTION BY MILNE THOM-
SON METHOD
Case I. When u is given

Step-1: Find
∂u
∂x

and equate it to φ1(x,y).

Step-2: Find
∂u
∂y

and equate it to φ2(x,y).

Step-3: Replace x by z and y by 0 in φ1(x,y) to get φ1(z,0).
Step-4: Replace x by z and y by 0 in φ2(x,y) to get φ2(z,0).
Step-5: Find f (z) by the formula f (z) =

∫
[φ1(z,0)− iφ2(z,0)]dz+ c

Case II. When v is given
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Step-1: Find
∂v
∂x

and equate it to ψ2(x,y).

Step-2: Find
∂v
∂y

and equate it to ψ1(x,y).

Step-3: Replace x by z and y by 0 in ψ1(x,y) to get ψ1(z,0).
Step-4: Replace x by z and y by 0 in ψ2(x,y) to get ψ2(z,0).
Step-5: Find f (z) by the formula f (z) =

∫
[ψ1(z,0)+ iψ2(z,0)]dz+ c

� Example 2.17 If u = x2− y2, find a corresponding analytic function. �

Solution: Here given that u = x2− y2. So that
∂u
∂x

= 2x = φ1(x,y) and
∂u
∂y

= −2y = φ2(x,y).

On replacing x by z and y by 0, we have

f (z) =
∫

[φ1(z,0)− iφ2(z,0)]dz+ c

=
∫
(2z)dz+ c

= z2 + c

This is the required analytic function.

� Example 2.18 Show that ex(xcosy− ysiny) is a harmonic function. Find the analytic function
for which ex(xcosy− ysiny) is imaginary part. �

Solution: Here v = ex(xcosy− ysiny)

∂v
∂x

= ex(xcosy− ysiny)+ ex cosy = ψ2(x,y)(say), (2.1)

∂v
∂y

= ex(−xsiny− ycosy− siny) = ψ1(x,y)(say), (2.2)

∂ 2v
∂x2 = ex(xcosy− ysiny)+ ex cosy+ ex cosy

= ex(xcosy− ysiny+2cosy), (2.3)

∂ 2v
∂y2 = ex(−xcosy+ ysiny−2cosy). (2.4)

Adding equation (2.3) and (2.4), we have

∂ 2v
∂x2 +

∂ 2v
∂y2 = ex(xcosy− ysiny+2cosy)+ ex(−xcosy+ ysiny−2cosy) = 0

Hence given function v = ex(xcosy− ysiny) is harmonic function.
Now putting x = z and y = 0 in (2.1) and (2.2), we get ψ2(z,0) = zez + ez and ψ1(z,0) = 0
Hence by Milne-Thomson method, we have

f (z) =
∫

[ψ1(z,0)+ iψ2(z,0)]dz+ c

=
∫
(0+ i(zez + ez))dz+ c

= i(zez− ez + ez)+ c

= izez + c
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This is the required analytic function.

2.15 TRANSFORMATION
For every point (x,y) in the z-plane, the relation w = f (z) defines a corresponding point (u,v) in the
w-plane. We call this transformation or mapping of z-plane into w-plane. If a point z0 maps into
the point w0, w0 is also known as the image of z0.

� Example 2.19 Transform the rectangular region ABCD in z-plane bounded by x = 1,x = 3; y = 0
and y = 3. Under the transformation w = z+(2+ i). �

Solution: Here

w = z+(2+ i)

=⇒ u+ iv = x+ iy+(2+ i)

= (x+2)+ i(y+1)

By equating real and imaginary quantities, we have u = x+2 and v = y+1.

z-plane w-plane z-plane w-plane
x u = x + 2 y v = y + 1
1 = 1 + 2 = 3 0 = 0 + 1 = 1
3 = 3 + 2 = 5 3 = 3 + 1 = 4

Here the lines x = 1,x = 3; y = 0 and y = 1 in the z-plane are transformed onto the line u = 3,u =
5;v = 1 and v = 4 in the w-plane. The region ABCD in z-plane is transformed into the region EFGH
in w-plane.

� Example 2.20 Transform the curve x2− y2 = 4 under the mapping w = z2. �

Solution.

w = z2

=⇒ u+ iv = (x+ iy)2

= x2− y2 +2ixy

This gives u = x2− y2 and v = 2xy.

Image of the curve x2− y2 = 4 is a straight line, u = 4 parallel to the v-axis in w-plane.
Ans.
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2.16 CONFORMAL TRANSFORMATION

Let two curves C1, C2 in the z-plane intersect at the point Z0 and the corresponding curve C∗1 , C∗2
in the w-plane intersect at f (z0). If the angle of intersection of the curves at z0 in z-plane is
the same as the angle of intersection of the curves of w-plane at f (z0) in magnitude and sense,
then the transformation is called conformal.
If only the magnitude of the angle is preserved, transformation is Isogonal.
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Theorem 2.16.1 If f (z) is analytic, mapping is conformal.

Theorem 2.16.2 Prove that an analytic function f (z) ceases to be conformal at the points where
f ′(z) = 0.

Note 1. The point at which f ′(z) = 0 is called a critical point of the transformation.

� Example 2.21 If u = 2x2 + y2 and v =
y2

x
, show that the curves u = constant and v = constant

cut orthogonally at all intersections but that the transformation w = u+ iv is not conformal. �

Solution: For the curve, 2x2 + y2 = u

2x2 + y2 = constant = c1(say) (2.5)

Differentiating (2.5), we get

4x+2y
dy
dx

= 0 =⇒ dy
dx

=
−2x

y
= m1(say) (2.6)

For the curve,
y2

x
= constant = c2 (say),

y2 = c2x (2.7)

Differentiating (2.7), we get

2y
dy
dx

= c2 =⇒ dy
dx

=
c2

2y
=

y2

x
× 1

2y
=

y
2x

= m2(say) (2.8)

For orthogonal, from equation (2.6) and (2.8), we have

m1m2 =

(
−2x

y

)( y
2x

)
=−1

Hence, two curves cut orthogonally.
However, since

du
dx

= 4x,
du
dy

= 2y,
dv
dx

=−y2

x2 and
dv
dy

=
2y
x

The Cauchy-Riemann equations are not satisfied by u and v.
Hence, the function u+ iv is not analytic. So, the transformation is not conformal.

� Example 2.22 For the conformal transformation w = z2, show that �

a. The coefficient of magnification at z = 2+ i is 2
√

5.
b. The angle of rotation at z = 2+ i is tan−1(0.5).
c. The coefficient of magnification at z = 1+ i is 2

√
2.

d. The angle of rotation at z = 1+ i is
π

4
.
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Solution:

w = f (z) = z2

=⇒ f ′(z) = 2z

=⇒ f ′(2+ i) = 2(2+ i) = 4+2i.

(a.) Coefficient of magnification at z = 2+ i is | f ′(2+ i)|= |4+2i|= 2
√

5.

(b) Angle of rotation at z = 2+ i is amp f ′(2+ i) = (4+2i) = tan−1
(

2
4

)
= tan−1(0.5).

and f ′(1+ i) = 2(1+ i) = 2+2i
(c) The coefficient of magnification at z = 1+ i is | f ′(1+ i)|= |2+2i|=

√
4+4 = 2

√
2

(d) The angle of rotation at z = 1+ i is amp. f ′(1+ i) = 2+2i = tan−1
(

2
2

)
=

π

4
.

2.17 BILINEAR TRANSFORMATION (Mobius Transformation)
Definition 2.17.1 BILINEAR TRANSFORMATION (Mobius Transformation) The trans-
formation of the form

w =
az+b
cz+d

, provided ad−bc 6= 0.

is called bilinear transformation.

Definition 2.17.2 INVARIANT POINTS OF BILINEAR TRANSFORMATION We know
that

w =
az+b
cz+d

,

If z maps into itself, then w = z

z =
az+b
cz+d

, (2.9)

Roots of (2.9) are the invariants or fixed points of the bilinear transformation.
If the roots are equal, the bilinear transformation is said to be parabolic.

Definition 2.17.3 CROSS-RATIO If there are four points z1, z2, z3, z4 taken in order, then the
ratio

(z1− z2)(z3− z4)

(z2− z3)(z4− z1)
,

is called the cross-ratio of z1, z2, z3, z4.

Theorem 2.17.1 A bilinear transformation preserves cross-ratio of four points i.e.
(w1−w2)(w3−w4)

(w2−w3)(w4−w1)
=

(z1− z2)(z3− z4)

(z2− z3)(z4− z1)
.

� Example 2.23 Find the bilinear transformation which maps the points z = 1, i,−1 into the points
w = i,0,−i. Hence find the image of |z|< 1. �
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Solution: Let the required transformation be w =
az+b
cz+d

w =

a
d

z+
b
d

c
d

z+1
=⇒ w =

pz+q
rz+1

(2.10)

where p =
a
d

, q =
b
d

and r =
c
d

.
On substituting the values of z = 1 and corresponding values of w = i in (2.10), we get

i =
p+q
r+1

=⇒ p+q = ir+ i (2.11)

Again on substituting the values of z = i and corresponding values of w = 0 in (2.10), we get

0 =
ip+q
ir+1

=⇒ ip+q = 0 (2.12)

Finally, on substituting the values of z =−1 and corresponding values of w =−i in (2.10), we get

−i =
−p+q
−r+1

=⇒ −p+q = ir− i (2.13)

Solving equation (2.11), (2.12) and (2.13, we get p = i, q = 1 and r =−i.
Now substitute the value of p, q and r in (2.10), we get the required Bilinear transformation as

w =
iz+1
−iz+1

. (2.14)

To find the image of |z|< 1 under the Bilinear map w =
iz+1
−iz+1

, we rewrite the given equation in

the terms of real and imaginary parts as

u+ iv =
i(x+ iy)+1
−i(x+ iy)+1

=
ix− y+1
−ix+ y+1

=
(ix− y+1)(ix+ y+1)
(−ix+ y+1)(ix+ y+1)

=
−x2− y2 +1+2ix

x2 +(y+1)2 .(2.15)

Equating real parts we get

u =
−x2− y2 +1
x2 +(y+1)2 . (2.16)

But we have, |z|< 1 =⇒ x2 + y2 < 1 =⇒ 0 < 1− x2− y2. Thus equation (2.16) shows that u > 0.
In other words the open disk in z-plane maps into open upper half of w-plane.
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2.18 Line Integral
If f (z) = u(x,y)+ iv(x,y), then since dz = dx+ idy,
we have∫

C f (z)dz =
∫

C(u+ iv)(dx+ idy) =
∫

C(udx− vdy)+ i
∫

C(vdx+udy), where C is closed path,

which shows that the evaluation of the line integral of a complex function can be reduced to the
evaluation of two line integrals of real functions.

� Example 2.24 Evaluate
∫ 2+i

0 (z̄)2dz along the real axis from z = 0 to z = 2 and then along a line
parallel to y-axis from z = 2 to z = 2+ i. �

Solution:
∫ 2+i

0 (z̄)2dz =
∫ 2+i

0 (x− iy)2(dx+ idy)
=
∫

OA(x)
2dx +

∫
AB(2 − iy)2idy Since [Along OA,y =

0,dy = 0, x varies 0 to 2. Along AB,x = 2,dx = 0 and
y varies 0 to 1]
=
∫ 2

0 (x)
2dx+

∫ 1
0 (2− iy)2idy

=
∫ 2

0 x2dx+ i
∫ 1

0 (4−4iy− y2)dy

=

[
x3

3

]2

0
+ i
[(

4y−4i
y2

2
− y3

3

)]1

0
=

8
3
+ i
(

4−4i
1
2
− 1

3

)
=

1
3
(14+11i) .

Which is the required value of the given integral.

� Example 2.25 Evaluate
∫ 1+i

0 (x2− iy)dz along the path
(a) y = x (b) y = x2. �

Solution: (a) Along the line y = x,
dy = dx so that dz = dx+ idy
dz = dx+ idx = (1+ i)dx
By putting y = x and dz = (1+ i)dx], we have∫ 1+i

0 (x2− iy)dz =
∫ 1

0 (x
2− ix)dx

= (1+ i)
[

x3

3
− i

x2

2

]1

0
= (1+ i)

[
13

3
− i

12

2

]
=

1
6
(5− i) .

Which is the required value of the given integral.

(b) Along the parabola y = x2, dy = 2xdx so that dz = dx+ idy
=⇒ dz = dx+2ixdx = (1+2ix)dx and x varies from 0 to 1.∫ 1+i

0 (x2− iy)dz =
∫ 1

0 (x
2− ix2)(1+2ix)dx

= (1− i)
∫ 1

0 (x
2 +2ix3)dx = (1− i)

[
x3

3
+2i

x4

4

]1

0
= (1− i)

[
13

3
+2i

14

4

]
=

1
6
(5+ i) .

Which is the required value of the given integral.
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� Example 2.26 Evaluate
∫

C (z−a)ndz where C is the circle with centre a and r. Discuss the case
when n =−1. �

Solution: The equation of cir-
cle C is |z − a| = r or z − a =
reiθ

where θ varies from 0 to 2π . so that dz =
rieiθ dθ

By putting z − a = reiθ and dz = rieiθ dθ , we
have∫

C (z−a)ndz =
∫ 2π

0 (reiθ )nrieiθ dθ

=
∫ 2π

0 rn+1iei(nθ+θ)dθ = irn+1 ∫ 2π

0 ei(n+1)θ dθ

= irn+1

[
ei(n+1)θ

i(n+1)

]2π

0

=
rn+1

n+1
[
ei(n+1)2π −1

]
=

rn+1

n+1
[cos(n+1)2π + isin(n+1)2π−1]

=
rn+1

n+1
[1+ i.0−1] = 0.

When n =−1,∫
C (z−a)ndz =

∫
C

1
(z−a)

dz =
∫ 2π

0
1

reiθ rieiθ dθ =
∫ 2π

0 idθ = 2πi

Which is the required value of the given integral.

2.19 IMPORTANT DEFINITIONS
Definition 2.19.1 Simply connected Region: A connected region is said to be a simply con-
nected if all the interior points of a closed curve C drawn in the region D are the points of the
region D.

Definition 2.19.2 Multi-Connected Region: Multi-connected region is bounded by more than
one curve. We can convert a multi-connected region into a simply connected one, by giving it
one or more cuts.

Definition 2.19.3 A function f (z) is said to be meromorphic in a region R if it is analytic in the
region R except at a finite number of poles.
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2.19 IMPORTANT DEFINITIONS 85

Definition 2.19.4 Single-valued and Multi-valued function: If a function has only one value
for a given value of z, then it is a single valued function.

For example f (z) = z2

If a function has more than one value, it is known as multi-valued function,

For example f (z) =
√

z

Definition 2.19.5 Jordan arc: A continuous arc without multiple points is called a Jordan arc.

Definition 2.19.6 Regular arc: If the derivatives of the given function are also continuous in the
given range, then the arc is called a regular arc.

Definition 2.19.7 Contour: A contour is a Jordan curve consisting of continuous chain of a
finite number of regular arcs.
The contour is said to be closed if the starting point A of the arc coincides with the end point B of
the last arc.

Definition 2.19.8 Zeros of an Analytic function: The value of z for which the analytic function
f (z) becomes zero is said to be the zero of f (z).

For example,
(1) Zeros of z2−3z+2 are z = 1 and z = 2.

(2) Zeros of cosz is ±(2n−1)
π

2
, where n = 1,2,3, ...

Theorem 2.19.1 CAUCHY’S INTEGRAL THEOREM-I If a function f (z) is analytic and its
derivative f ′(z) continuous at all points inside and on a simple closed curve C, then∫

C f (z)dz = 0

.

Proof: See the proof at page no. 548 in the book written by H.K.Dass
Note: If there is no pole inside and on the contour then the value of the integral of the function is
zero.

� Example 2.27 Find the integral
∫

C
3z2 +7z+1

z+1
dz where C is the circle |z|= 1

2
�

Solution: Poles of the integrand are given by putting the
denominator equal to zero.i.e.

z+1 = 0 =⇒ z =−1 The given circle |z|= 1
2

with centre

at z = 0 and radius
1
2

does not enclose any singularity of
the given function. Therefore by Cauchy Integral Formula∫

C
3z2 +7z+1

z+1
dz = 0.
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86 Chapter 2. Complex Analysis

Theorem 2.19.2 CAUCHY’S INTEGRAL THEOREM-II If f (z) is analytic within and on a
closed curve C, and if a is any point within C, then, then

1
2πi

∫
C

f (z)
(z−a)

dz = f (a).

, where C is any closed curve in R surrounding the point z = a.

Proof: See the proof at page no. 551 in the book written by H.K.Dass

� Example 2.28 Evaluate the integral
∫

C
1

z2 +9
dz where C is the circle |z+3i|= 2 and |z|= 5. �

Solution: Here f (z) =
1

z2 +9
.

The poles of f (z) can be determined by equating the de-
nominator equal to zero.
(i.) z2 + 9 = 0 =⇒ z = ±3i. Pole at z = −3i lies in the

given circle C.
∫

C f (z)dz =
∫

C
1

z2 +9
=
∫

C
1

(z+3i)(z−3i)
.

=
∫

C
1/(z−3i)
(z+3i)

= 2πi
[

1
(z−3i)

]
z=−3i

= 2πi
[

1
(−3i−3i)

]
=−π

3
.

(ii.) z2 + 9 = 0 =⇒ z = ±3i. Pole at z = −3i lies in the

given circle C.
∫

C f (z)dz =
∫

C
1

z2 +9
=
∫

C
1

(z+3i)(z−3i)
.

=
∫

C
1/(z−3i)
(z+3i)

+
∫

C
1/(z+3i)
(z−3i)

= 2πi
[

1
(z−3i)

]
z=−3i

+2πi
[

1
(z+3i)

]
z=3i

= 2πi
[

1
(−3i−3i)

]
+2πi

[
1

(3i+3i)

]
=−π

3
+

π

3
= 0.

Theorem 2.19.3 CAUCHY’S INTEGRAL FORMULA FOR THE DERIVATIVE OF AN
ANALYTIC FUNCTION If a function f (z) is analytic in a region R, then its derivative at any
point z = a of R is also analytic in R, and is given by,

f ′(a) =
1

2πi
∫

C
f (z)

(z−a)2 dz.

Proof: See the proof at page no. 550 in the book written by H.K.Dass
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Theorem 2.19.4 CAUCHY’S INTEGRAL FORMULA FOR THE DERIVATIVE OF OR-
DER n OF AN ANALYTIC FUNCTION If a function f (z) is analytic in a region R, then its
derivative of order n at any point z = a of R is also analytic in R, and is given by,

f n(a) =
n!

2πi
∫

C
f (z)

(z−a)n+1 dz.

� Example 2.29 Find the integral
∫

C
e3z

(z− log2)4 dz, where C is the square with vertices at ±1,±i. �

Solution: Here
∫

C
e3z

(z− log2)4 dz Poles of the integrand

are given by putting the denominator equal to zero.i.e.
(z− log2)4 = 0 =⇒ z = log2. The integral has a pole of
fourth order.∫

C
e3z

(z− log2)4 dz =
2πi
3!

f
′′′ [

e3z
]

z=log2

=
2πi
3!

3.3.3.
[
e3z
]

z=log2

= 9πie3log2 = 9πielog23
= 9πielog8 = 72πi.

� Example 2.30 Use Cauchy integral formula to evaluate
∫

C
sinπz2 + cosπz2

(z−1)(z−2)
dz, where C is the

circle |z|= 3. �

Solution: Here
∫

C
sinπz2 + cosπz2

(z−1)(z−2)
dz Poles of the in-

tegrand are given by putting the denominator equal to
zero.i.e.
(z−1)(z−2) = 0 =⇒ z = 1,2. The integral has two pole
at z = 1,2. The given circle |z| = 3 with centre at z = 0
and radius 3 encloses both the poles z = 1, and z = 2.

∫
C

sinπz2 + cosπz2

(z−1)(z−2)
dz

=
∫

C1

(sinπz2 + cosπz2)/(z−2)
(z−1)

dz+
∫

C2

(sinπz2 + cosπz2)/(z−1)
(z−2)

dz

= 2πi
[
(sinπz2 + cosπz2)

(z−2)

]
z=1

+2πi
[
(sinπz2 + cosπz2)

(z−1)

]
z=2

= 2πi
[
(sinπ + cosπ)

(1−2)

]
+2πi

[
(sin4π + cos4π)

(2−1)

]
= 2πi

[
−1
(−1

]
+2πi

[
1
1

]
= 4πi.

Which is the required value of the given integral.

� Example 2.31 Use Cauchy integral formula to evaluate
∫

C
e3iz

(z+π)3 dz, where C is the circle

|z−π|= 3.2. �
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Solution: Here
∫

C
e3iz

(z+π)3 dz, where C is a circle |z−π|=
3.2 with centre π and radius 3.2. Poles of the integrand
are given by putting the denominator equal to zero.i.e.
(z+ π)3 = 0 =⇒ z = −π,−π,−π . The integral has a
pole of order 3 at z = π . But there is no pole within C. By

Cauchy Integral Formula
∫

C
e3iz

(z+π)3 dz = 0.

Which is the required value of the given integral.

2.20 Taylor’s Theorem

Theorem: Suppose that a function f (z) is analytic
throughout a disk |z−a|< R, centered at a and with radius
R. Then f (z) has the power series representation

f (z) = ∑
∞
n=0 an(z−a)n (|z−a|< R)

where

an =
f n(a)

n!
(n = 0,1,2, ...).

i.e. f (z) = f (a)+
(z−a)

1!
f ′(a)+

(z−a)2

2!
f ′′(a)+ ...+

(z−a)n

n!
f n(a)+ .... This series is called

Taylor’s Series of f (z) about z = a.

If a = 0, then the series f (z) = f (0)+
z
1!

f ′(0)+
z2

2!
f ′′(0)+ ...+

zn

n!
f n(0)+ ... is called Maclaurin’s

Series of f (z) about z = 0.

� Example 2.32 Obtain the Taylor’s series expansion of the function f (z) =
1

z2 +(1+2i)z+2i
about z = 0. �

Solution: Here the given function is f (z) =
1

z2 +(1+2i)z+2i
. This function can be written as

f (z)=
1

(z+2i)(z+1)
=

1
(2i−1)(z+1)

+
1

(1−2i)(z+2i)
=

1
(2i−1)

(z+1)−1+
1

(1−2i)
(z+2i)−1

=
1

(2i−1)
(z+1)−1 +

1
2i(1−2i)

(
1+

z
2i

)−1

=
1

(2i−1)
[
1− z+ z2− z3 + ...

]
+

1
(2i+4)

[
1− z

2i
− z2

4
− z3

8i
+ ...

]
After simplifying we get the required expansion.
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Theorem: Suppose that a function f (z) is analytic
throughout an annular domain R1 < |z− a| < R2 , cen-
tered at a, and let C denote any positively oriented simple
closed contour around a and lying in that domain. Then, at
each point in the domain, f (z) has the series representation

f (z) = ∑
∞
n=0 an(z−a)n +∑

∞
n=1 bn(z−a)−n

(R1 < |z−a|< R2)

where

an =
1

2πi
∫

C
f (z)

(z−a)n+1 dz (n = 0,1,2, ...).

and

bn =
1

2πi
∫

C
f (z)

(z−a)−n+1 dz (n = 1,2,3, ...).

2.21 Laurent’s Theorem
Definition 2.21.1 Laurent’s series: An expansion of the function f (z) in the form

f (z) = ∑
∞
n=0 an(z−a)n +∑

∞
n=1 bn(z−a)−n

is called Laurent’s series expansion. The part ∑
∞
n=1 bn(z−a)−n is called Principal Part of the

function f (z) at z = 0.

� Example 2.33 Obtain the Laurent’s series expansion of the function f (z) =
1

(z+1)(z+3)
, which

is valid for
(a) 1 < |z|< 3 (b) |z|> 3 (c) 0 < |z+1|< 2. �

Solution: Here the given function is f (z) =
1

(z+1)(z+3)
. Resolving this function into partial

fractions, we get

f (z) =
1

(z+1)(z+3)
=

1
2

(
1

z+1
− 1

z+3

)
.

(a) For 1 < |z|< 3:
Since |z|> 1 and |z|< 3, the above fractions can be written as

f (z) =
1
2

(
1

z+1
− 1

z+3

)
=

1
2z

(
1

1+1/z

)
− 1

2
1
3

(
1

1+ z/3

)
.

=
1
2z

(
1+

1
z

)−1

− 1
6

(
1+

z
3

)−1
.

=
1
2z

[
1− 1

z
+

1
z2 −

1
z3 + ...

]
− 1

6

[
1− z

3
+

z2

32 −
z3

33 + ...

]
.
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(b) For |z|> 3:

f (z) =
1
2

(
1

z+1
− 1

z+3

)
=

1
2z

(
1

1+1/z

)
− 1

2z

(
1

1+3/z

)
.

=
1
2z

(
1+

1
z

)−1

− 1
2z

(
1+

3
z

)−1

.

=
1
2z

[
1− 1

z
+

1
z2 −

1
z3 + ...

]
− 1

2z

[
1− 3

z
+

32

z2 −
33

z3 + ...

]
.

=
1
2

[
1
z
− 1

z2 +
1
z3 −

1
z4 + ...

]
− 1

2

[
1
z
− 3

z2 +
32

z3 −
33

z4 + ...

]
.

=
1
z2 −

4
z3 +

13
z4 − ....

(c) For |z+1|< 2:

f (z) =
1
2

(
1

z+1
− 1

z+3

)
=

1
2

(
1

z+1
− 1

z+1+2

)
.

=
1

2(z+1)
− 1

4

(
1+

z+1
2

)−1

=
1

2(z+1)
− 1

4

[
1− z+1

2
+

(z+1)2

4
− (z+1)3

8
+ ...

]

=
1

2(z+1)
− 1

4
+

z+1
8
− (z+1)2

16
+

(z+1)3

32
− ....

� Example 2.34 Expands f (z) =
z

(z2−1)(z2 +4)
, in 1 < |z|< 2. �

Solution: Here the given function is f (z) =
z

(z2−1)(z2 +4)
, where 1 < |z| < 2 or 1 < |z|2 < 4.

Resolving this function into partial fractions, we get

f (z) =
z
5

(
1

z2−1
− 1

z2 +4

)
Since |z|2 > 1 and |z|2 < 4, the above fractions can be written as

z
5z2

(
1

1−1/z2

)
− z

5.4

(
1

1+ z2/4

)
=

1
5z

(
1− 1

z2

)−1

− z
20

(
1+

z2

4

)−1

=
1
5z

[
1+

1
z2 +

1
z4 +

1
z6 + ...

]
− z

20

[
1− z2

4
+

z4

42 −
z6

43 + ...

]
.

=
1
5

[
1
z
+

1
z3 +

1
z5 +

1
z7 + ...

]
− 1

20

[
z− z3

4
+

z5

42 −
z7

43 + ...

]
.
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Which is the Laurent’s expansion of f (z)in 1 < |z|< 2.

� Example 2.35 Expands f (z) =
7z−2

(z+1)z(z−2)
, in 1 < |z+1|< 3. �

Solution: Let z+ 1 = u, then the given function is f (z) =
7z−2

(z+1)z(z−2)
can be written as

f (u) =
7(u−1)−2

u(u−1)(u−1−2)
=

7u−9
u(u−1)(u−3)

, where 1 < |u| < 3. Resolving this function into

partial fractions, we get

f (u) =−3
u
+

1
u−1

+
2

u−3

Since |u|> 1 and |u|< 3, the above fractions can be written as

−3
u
+

1
u

(
1

1−1/u

)
+

1
3

(
2

u/3−1

)
=−3

u
+

1
u

(
1− 1

u

)−1

− 2
3

(
1− u

3

)−1

=−3
u
+

1
u

(
1+

1
u
+

1
u2 +

1
u3 + ...

)
− 2

3

(
1+

u
3
+

u2

32 +
u3

33 + ...

)

=−2
u
+

1
u2 +

1
u3 +

1
u4 + ...− 2

3

(
1+

u
3
+

u2

32 +
u3

33 + ...

)

=− 2
z+1

+
1

(z+1)2 +
1

(z+1)3 +
1

(z+1)4 + ...− 2
3

(
1+

z+1
3

+
(z+1)2

9
+

(z+1)3

27
+ ...

)
.

Which is the Laurent’s expansion of f (z)in 1 < |z+1|< 3.

2.22 SINGULARITIES OF ANALYTIC FUNCTION
Definition 2.22.1 A zero of analytic function f (z) is the value of z for which f (z) = 0.

Definition 2.22.2 SINGULAR POINT: A point at which a function f (z) is not analytic is
known as a singular point or singularity of the function.

For Example: The function
1

z−a
has a singular point at z−a = 0 or z = a.

Definition 2.22.3 Isolated singular point: If z = a is a singularity of f (z) and if there is no
other singularity in the neighborhood of the point z = a, then z = a is said to be an isolated
singularity of the function f (z); otherwise it is called non-isolated.

For Example: The function
1

(z−a)(z−b)
has a singular point at z = a,b. Here in the neighborhood

of a and b, there does not exits any other singularities. Hence a and b are isolated singularities.

Example of non-isolated singularity: The function f (z) = cosec
(

π

z

)
is not analytic at the points

where sin
(

π

z

)
= 0 i.e., at the points

π

z
= nπ i.e., the points z =

1
n

i.e., the points z = 1,
1
2
,
1
3
,
1
4
, ....

Here z = 0 is the limit points of z =
1
n

. Hence z = 0 is the non-isolated singularity of the function
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f (z) = cosec
(

π

z

)
because in the neighbourhood of z = 0, there are infinite number of other

singularities z =
1
n

, when n is very large.

Definition 2.22.4 Pole: If the principle part of the function f (z) at z = a in Laurent’s expansion
has only finite number of terms (say m), we say f (z) has pole of order m at z = a. or
if ∃ a +ve integer m such that

lim
z→a

(z−a)m f (z) = k(constant) 6= 0.,

then we say that f (z) has a pole of order m at z = a.

For Example:1. The function f (z) =
1

(z−1)2(z+2)5 has a pole at z = 1 of order 2 and has a pole

at z =−2 of order 5.

2. tanz and secz has simple poles at z =±π

2
,±3π

2
, ....

3. cotz and cosecz has simple poles at z = 0,±π,±2π, ....

Definition 2.22.5 Essential Singularities: If the principle part of f (z) at z = a in Laurent’s
series expansion has infinite number of terms, then we say that z = a is an essential singularities
of f (z). or
If lim

z→a
f (z) does not exist, then we say that z = a is essential singularities f (z) .

For Example:1. The function f (z) = e1/z has an essential singularities at z= 0 because its expansion
about z = 0

e1/z = 1+
1
z
+

1
2!z2 +

1
3!z3 + ...

has infinite number of terms in negative powers of z.

2. The function f (z) = sin
(

1
z−a

)
has an essential singularities at z = a because its expansion

about z = a

sin
(

1
z−a

)
=

1
z−a

− 1
3!(z−a)3 +

1
5!(z−a)5 − ...

has infinite number of terms in negative powers of z−a.

Definition 2.22.6 Removable Singularities: If the principle part of f (z) at z = a in Laurent’s
series expansion has no terms, then we say that z = a is a removable singularities of f (z). or
z = a is said to be removable singularities if lim

z→a
f (z) exist finitely.

For Example:1. The function f (z) =
sinz

z
has removal singularities at z = 0 because its expansion

about z = 0
sinz

z
= 1− 1

3!
z2 +

1
5!

z4...

has no number of terms in negative powers of z.

2. The function f (z) =
z− sinz

z2 has a removable singularities at z = 0 because its expansion about

z = 0
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2.23 DEFINITION OF THE RESIDUE AT A POLE 93

z− sinz
z2 =

1
z2

[
z−
(

z− z3

3!
+

z5

5!
+ ...

)]
=

z
3!
− z3

5!
+ ...

has no number of terms in negative powers of z.

� Example 2.36 Find out the zeros and discuss the nature of the singularities of

f (z) =
z−2

z2

(
sin

1
z−1

)
.

�

Solution: Poles of f (z) are given by equating to zero the denominator of f (z) i.e. z = 0 is a pole
of order two.

zeros of f (z) are given by equating to zero the numerator of f (z) i.e., (z−2)sin
(

1
z−1

)
= 0

=⇒ Either z−2 = 0 or sin
(

1
z−1

)
= 0

=⇒ z = 2 and
1

z−1
= nπ

=⇒ z = 2 and z = 1+
1

nπ
,n =±1,±2,±3, ...

Thus, z = 2 is a simple zero. The limit point of the zeros z = 1+
1

nπ
are given by z = 1. Hence z = 1

is an isolated essential singularity.

2.23 DEFINITION OF THE RESIDUE AT A POLE

[h!]

Let z = a be a pole of order m of a function f (z) and C1 circle
of radius r with centre at z = a which does not contain any
other singularities except at z = a then f (z) is analytic within
the annulus r < |z−a|< R can be expanded within the annulus.
Laurent’s series:

f (z) = ∑
∞
n=0 an(z−a)n +∑

∞
n=1 bn(z−a)−n, where

an =
1

2πi
∫

C2

f (z)
(z−a)(n+1) dz

and

bn =
1

2πi
∫

C1

f (z)
(z−a)(−n+1) dz

|z−a|= r being the circle C1.
Particularly,

b1 =
1

2πi
∫

C1
f (z)dz.

The coefficient b1 is called residue of f (z) at the pole z = a. It is denoted by symbol Res.(z = a) = b1.
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94 Chapter 2. Complex Analysis

2.24 RESIDUE AT INFINITY

Residue of f (z) at z = ∞ is defined as

− 1
2πi

∫
C f (z)dz,

where the integration is taken round C in anti-clockwise direction. where C is a large circle containing
all finite singularities of f (z).

2.25 METHOD OF FINDING RESIDUES
a. Residue at simple pole: (i.) If f (z) has a simple pole at z = a, then

Res. f (a) = lim
z→a

(z−a) f (z)

(ii.) If f (z) is of the form f (z) =
φ(z)
ψ(z)

, where ψ(a) = 0 but φ(a) 6= 0. then

Res.(z = a) =
φ(a)
ψ ′(a)

b. Residue at a pole of order n. If f (z) has a pole of order n at z = a, then

Res.(z = a) =
1

(n−1)!

{
dn−1

dzn−1 [(z−a)n f (z)]
}

z=a

c. Residue at a pole z = a of any order (simple or of order n)

Res f (a) = coefficient of
1
t

.

Rule. Put z = a+ t in the function f (z), expand it in powers of t. Coefficient of
1
t

is the

residue of f (z) at z = a.
d. Residue at a pole z = ∞

Res f (z = ∞) = lim
z→∞

[−z f (z)].

or The residue of f (z) at infinity =− 1
2πi

∫
C f (z)dz.

� Example 2.37 Find the residue at z = 0 of zcos
1
z
. �

Solution: Expanding the function in powers of
1
z

, we have

zcos
1
z
= z
[

1− 1
2!z2 +

1
4!z4 − ...

]
= z− 1

2!z
+

1
4!z3 − ...

This is the Laurent’s expansion about z = 0.

The coefficient of
1
z

is −1
2

. So the residue of zcos
1
z

at z = 0 is −1
2

.

� Example 2.38 Find the residue of f (z) =
z3

z2−1
at z = ∞. �
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2.25 METHOD OF FINDING RESIDUES 95

Solution: We have, f (z) =
z3

z2−1

=
z3

z2

(
1− 1

z2

) = z
(

1− 1
z2

)−1

= z
(

1+
1
z2 +

1
z4 + ...

)
= z+

1
z
+

1
z3 + ...

Residue at infinity =-Coefficient of
1
z
=−1.

� Example 2.39 Evaluate the residues of f (z) =
z2

(z−1)(z−2)(z−3)
at z = 1,2,3 and ∞ and show

that their sum is zero. �

Solution: Here f (z) =
z2

(z−1)(z−2)(z−3)
. The poles of f (z) are determined by putting the

denominator equal to zero.

(z−1)(z−2)(z−3) = 0 =⇒ z = 1,2,3

Residue of f (z) at (z = 1)

= lim
z→1

(z−1) f (z) = lim
z→1

(z−1)
z2

(z−1)(z−2)(z−3)
= lim

z→1

z2

(z−2)(z−3)
=

1
2

Again, Residue of f (z) at (z = 2)

= lim
z→2

(z−2) f (z) = lim
z→2

(z−2)
z2

(z−1)(z−2)(z−3)
= lim

z→2

z2

(z−1)(z−3)
=−4

Also, Residue of f (z) at (z = 3)

= lim
z→3

(z−3) f (z) = lim
z→3

(z−3)
z2

(z−1)(z−2)(z−3)
= lim

z→3

z2

(z−1)(z−2)
=

9
2

Finally, Residue of f (z) at (z = ∞)

= lim
z→∞
−z f (z) = lim

z→∞

(−z)z2

(z−1)(z−2)(z−3)
= lim

z→∞

−1(
1− 1

z

)(
1− 2

z

)(
1− 3

z

) =−1

Sum of the residues at all the poles of f (z) =
1
2
−4+

9
2
−1 = 0. Hence, the sum of the residues is

zero.

� Example 2.40 Find the residue of f (z) =
1

(z2 +1)3 at z = i. �

Solution: Here f (z) =
1

(z2 +1)3 . The poles of f (z) are determined by putting denominator

equal to zero. i.e.

(z2 +1)3 = 0 =⇒ (z− i)3(z+ i)3 = 0 =⇒ z =±i

Here, z = i is a pole of order 3 of f (z).
Residue at z = i
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96 Chapter 2. Complex Analysis

=
1

(3−1)!

{
d3−1

dz3−1

[
(z− i)3 1

(z− i)3(z+ i)3

]}
z=i

=
1
2!

{
d2

dz2

[
1

(z+ i)3

]}
z=i

1
2!

[
3×4
(z+ i)5

]
z=i

=
1
2

12
(i+ i)5 =

6
25i5

=
−3i
16

Hence, the residue of the given function at z = i is
−3i
16

.

� Example 2.41 Determine the poles and residue at each pole of the function f (z) = cotz. �

Solution: Here f (z) = cotz =
cosz
sinz

. The poles of the function f (z) are given by

sinz = 0 =⇒ z = nπ, where n = 0,±1,±2,±3...

Residue of f (z) at z = nπ is
cosz

d
dz

(sinz)
=

cosz
cosz

= 1.
[

Res.(z = a) =
φ(a)
ψ ′(a)

]
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3. Numerical Methods

Definition 3.0.1 A polynomial equation of the form

Pn(x) = anxn +an−1xn−1 +an−2xn−2 + ...+a1x+a0 = 0

is called an algebraic equation.

For Example: 3x5 +2x3− x2 +35 = 0, x4 +5x2 +7 = 0, −2x2−3x +4 = 0,

Definition 3.0.2 An equation which contains polynomials, exponential functions, logarithmic
functions, trigonometric functions etc. is called a transcendental equation.

For Example: xex−2x = 0, x tanx− logx = 4, sin2 x+ cosx = 0 are transcendental equations.

Definition 3.0.3 Root/zero: A number α , for which f (α) ≡ 0 is called a root of the equation
f (x) = 0, or a zero of f (x). Geometrically, a root of an equation f (x) = 0 is the value of x at
which the graph of the equation y = f (x) intersects the x-axis.

r
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98 Chapter 3. Numerical Methods

Theorem 3.0.1 Suppose the function f is continuous in [a,b] and f is differentiable on (a,b). If
f (a) = f (b), then a number c in (a,b) exists with f ′(c) = 0.

Theorem 3.0.2 Intermediate Value Theorem: If f (x) is continuous on some interval [a,b] and
f (a) f (b)< 0, then the equation f (x) = 0 has at least one real root or an odd number of real roots
in the interval (a,b).

� Example 3.1 Show that x5−2x3 +3x2−1 = 0 has a solution in the interval (0,1). �

Solution: Consider the function defined by x5−2x3 +3x2−1 = 0. The function f is continuous
on [0,1]. In addition, Here f (0) = −1 < 0 and f (1) = 1 > 0. Therefore by, Intermediate Value
Theorem there exist a number x with 0 < x < 1, for which x5−2x3 +3x2−1 = 0. Hence the given
function has the solution in the interval (0,1).

Bisection Method This method is applicable for numerically solving the equation f (x) = 0 for
the real variable x, where f is a continuous function defined on an interval [a,b] and f (a) and f (b)
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have opposite signs. Then by the intermediate value theorem, the continuous function f must have
at least one root in the interval (a,b). Now at each step, this method divides the interval in two
interval by computing the midpoint c = (a+ b)/2 of the interval and the value of the function f
at that point c. Unless c is itself a root, there are now only two possibilities: either f (a) and f (c)
have opposite signs or f (c) and f (b) have opposite signs. The method selects the subinterval that is
guaranteed to be a root in the new interval. The process is continued until the interval is sufficiently
small. Explicitly, if f (a) and f (c) have opposite signs, then the method sets c as the new value for b,
and if f (b) and f (c) have opposite signs then the method sets c as the new value for a. (If f (c) = 0
then c may be taken as the solution and the process stops.) In both cases, the new f (a) and f (b)
have opposite signs, so the method is applicable to this smaller interval.

� Example 3.2 Find the root of the equation x3−x−1 = 0 by bisection method up to two places of
decimal. �

Solution: Here f (x) = x3− x−1. Let x0 = 0 so that f (x0 = 0) = −1 < 0. and x1 = 2 so that
f (x1 = 2) = (2)3− (2)−1 = 5 > 0. Thus by intermediate value theorem the roots lies in the interval
(0,2). By using bisection method, the first approximation is

x2 =
x0 + x1

2
=

0+2
2

= 1

Now f (x2 = 1) = (1)3− (1)−1 =−1 < 0. Since f (x1 = 2) f (x2 = 1) = 5.(−1) =−5 < 0. There-
fore the roots lies in the interval (x2,x1)i.e.(1,2). Again by using bisection method, the second
approximation is

x3 =
x2 + x1

2
=

1+2
2

=
3
2

Now f
(

x3 =
3
2

)
=

(
3
2

)3

−
(

3
2

)
− 1 =

7
8
> 0. Since f (x2 = 1) f (x3 = 3/2) = (−1).(7/8) =

−7/8 < 0. Therefore the roots lies in the interval (x2,x3)i.e.(1,3/2). Again by using bisection
method, the third approximation is

x4 =
x2 + x3

2
=

1+3/2
2

=
5
4

Now f
(

x4 =
5
4

)
=

(
5
4

)3

−
(

5
4

)
−1=−19

64
< 0. Since f (x4 = 5/4) f (x3 = 3/2)= (−19/64).(7/8)=

133/512 > 0. Therefore the roots lies in the interval (x4,x3)i.e.(5/4,3/2). Repeating this process we
get x5 = 11/8,x6 = 21/16,x7 = 43/32,x8 = 85/64. This process will be continue until the difference
between last two approximation is less than 0.005.

� Example 3.3 Using bisection method, find the root of the equation 3x−
√

1+ sinx = 0. �

Solution: Here f (x) = 3x−
√

1+ sinx. Let x0 = 0 so that f (x0 = 0) =−1 < 0. and x1 = 1 so
that f (x1 = 1) = 3(1)−

√
1+ sin(1) = 3−

√
1+0.84 = 3−1.35 = 1.65 > 0. Thus by intermediate

value theorem the roots lies in the interval (0,1). By using bisection method, the first approximation
is

x2 =
x0 + x1

2
=

0+1
2

= 1/2 = 0.5
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100 Chapter 3. Numerical Methods

Now f (x2 = 0.5) = 3(0.5)−
√

1+ sin(0.5) = 3−
√

1+0.479 = 1.5− 1.216 = 0.28 > 0. Since
f (x0 = 0) f (x2 = 0.5)= (−1)(0.28)=−0.28< 0. Therefore the roots lies in the interval (x0,x2)i.e.(0,0.5).
Again by using bisection method, the second approximation is

x3 =
x0 + x2

2
=

0+0.5
2

= 0.25

Now f (x3 = 0.25) = 3(0.25)−
√

1+ sin(0.25) = 0.75−
√

1+0.247= 0.75−1.216=−0.117< 0.
Since f (x2 = 0.5) f (x3 = 0.25) = (0.28)(−0.117) = −0.33 < 0. Therefore the roots lies in the
interval (x2,x3)i.e.(0.5,0.25). Again by using bisection method, the third approximation is

x4 =
x2 + x3

2
=

0.5+0.25
2

= 0.35

Continuing this process we get the required answer.

Quiz

Question 1: What is a continuous function?
Question 2: How the midpoint is calculated in the Bisection method?
Question 3: What is a root of a function?
Question 4: After applying one iteration, by how much did our interval that might contain a zero of
f decrease?

1. Almost half
2. More than half
3. 50%
4. 70%

Regula-Falsi method: At the start of all iterations of the method, we require the interval in which the
root lies. Let the root of the equation f (x) = 0, lie in the interval (xk−1,xk), that is, fk−1 fk < 0, where
f (xk−1) = fk−1, and f (xk) = fk. Then, P(xk−1, fk−1), Q(xk, fk) are points on the curve f (x) = 0.

Figure 3.1: Regula-falsi method

Draw a straight line joining the points P and Q. The line PQ is taken as an approximation of the
curve in the interval [xk−1,xk]. The equation of the line PQ is given by

y− fk
fk−1− fk

= x−xk
xk−1−xk
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The point of intersection of this line PQ with the x−axis is taken as the next approximation to the
root. Setting y = 0, and solving for x, we get

x = xk−
(

xk−1−xk
fk−1− fk

)
fk= xk−

(
xk−xk−1
fk− fk−1

)
fk

Thus the (k+1)th iteration will be

xk+1 = xk−
(

xk−xk−1
fk− fk−1

)
fk =

xk−1 fk− xk fk−1

fk− fk−1

This method is also called linear interpolation method or chord method or false position method.

� Example 3.4 Locate the intervals which contain the positive real roots of the equation x3−3x+1=
0. Obtain these roots correct to three decimal places, using the method of false position. �

Solution: We form the following table of values for the function f (x).

x 0 1 2 3
f (x) 1 -1 3 19

There is one positive real root in the interval (0,1) and another in the interval (1,2). There is no real
root for x > 2 as f (x)> 0, for all x > 2.
First, we find the root in (0,1). We have x0 = 0,x1 = 1, f0 = f (x0) = f (0) = 1, f1 = f (x1) = f (1) =
−1.

x2 =
x0 f1− x1 f0

f1− f0
=

(0)(−1)− (1)(1)
(−1)− (1)

=
1
2
= 0.5

Now, f2 = f (x2) = f (0.5) =−0.375. Since, f (0) f (0.5)< 0, the root lies in the interval (0,0.5).

x3 =
x0 f2− x2 f0

f2− f0
=

(0)(−0.375)− (0.5)(1)
(−0.375)− (1)

= 0.36364

Now, f3 = f (x3) = f (0.36364) =−0.04283. Since, f (0) f (0.36364)< 0, the root lies in the interval
(0,0.36364).

x4 =
x0 f3− x3 f0

f3− f0
=

(0)(−0.04283)− (0.36364)(1)
(−0.04283)− (1)

= 0.34870

Now, f4 = f (x4) = f (0.34870) =−0.00370. Since, f (0) f (0.34870)< 0, the root lies in the interval
(0,0.34870).

x5 =
x0 f4− x4 f0

f4− f0
=

(0)(−0.00370)− (0.34870)(1)
(−0.00370)− (1)

= 0.34741

Now, f5 = f (x5) = f (0.34741) =−0.00030. Since, f (0) f (0.34741)< 0, the root lies in the interval
(0,0.34741).

x6 =
x0 f5− x5 f0

f5− f0
=

(0)(−0.00030)− (0.34741)(1)
(−0.00030)− (1)

= 0.347306

Now, |x6− x5|= |0.34730−0.34741|= 0.0001 < 0.0005.
The root has been computed correct to three decimal places. The required root can be taken as
x = x6 = 0.347306. We may also give the result as 0.347, even though x6 is more accurate. Note
that the left end point x = 0 is fixed for all iterations.
Now, we compute the root in (1,2). We have
x0 = 1,x1 = 2, f0 = f (x0) = f (1) =−1, f1 = f (x1) = f (2) = 3.
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102 Chapter 3. Numerical Methods

x2 =
x0 f1− x1 f0

f1− f0
=

(1)(3)− (2)(−1)
(3)− (−1)

= 1.25

Now, f2 = f (x2) = f (1.25) = −0.796875. Since, f (1.25) f (2) < 0, the root lies in the interval
(1.25,2).

x3 =
x2 f1− x1 f2

f1− f2
=

(1.25)(3)− (2)(−0.796875)
(3)− (−0.796875)

= 1.407407

Now, f3 = f (x3) = f (1.407407) = −0.434437. Since, f (1.407407) f (2) < 0, the root lies in the
interval (1.407407,2).
Similarly, we get x4 = 1.482367, x5 = 1.513156, x6 = 1.525012, x7 = 1.529462, x8 = 1.531116,
x9 = 1.531729, x10 = 1.531956.
Now, |x10− x9|= |1.531956−1.53179|= 0.000227 < 0.0005.
The root has been computed correct to three decimal places. The required root can be taken as
x = x10 = 1.531956. Note that the right end point x = 2 is fixed for all iterations.

� Example 3.5 Find the root correct to two decimal places of the equation xex = cosx, using the
method of false position. �

Solution: Define f (x) = cosx− xex = 0. We form the following table of values for the function
f (x).

x 0 1
f (x) 1 -2.17798

A root of the equation lies in the interval (0,1). Let x0 = 0,x1 = 1. Using the method of false
position, we obtain the following results.

x2 =
x0 f1− x1 f0

f1− f0
=

(0)(−2.17798)− (1)(1)
(−2.17798)− (1)

= 0.31467

Now, f2 = f (x2) = f (0.31467) = 0.51986. Since, f (0.31467) f (1)< 0, the root lies in the interval
(0.31467,1).

x3 =
x2 f1− x1 f2

f1− f2
=

(0.31467)(−2.17798)− (1)(0.51986)
(−2.17798)− (0.51986)

= 0.44673

Now, f3 = f (x3) = f (0.44673) = 0.20354. Since, f (0.44673) f (1)< 0, the root lies in the interval
(0.44673,1).

x4 =
x3 f1− x1 f3

f1− f3
=

(0.44673)(−2.17798)− (1)(0.20354)
(−2.17798)− (0.20354)

= 0.49402

Now, f4 = f (x4) = f (0.49402) = 0.07079. Since, f (0.49402) f (1)< 0, the root lies in the interval
(0.49402,1).

x5 =
x4 f1− x1 f4

f1− f4
=

(0.49402)(−2.17798)− (1)(0.07079)
(−2.17798)− (0.07079)

= 0.50995

Now, f5 = f (x5) = f (0.50995) = 0.02360.. Since, f (0.50995) f (1)< 0, the root lies in the interval
(0.50995,1).
Similarly we get, x6 = 0.51520, x7 = 0.51692.
Now, |x7− x6|= |0.51692−0.51520|= 0.00172 < 0.005. The root has been computed correct to
two decimal places. The required root can be taken as x = x7 = 0.51692. Note that the right end
point x = 2 is fixed for all iterations.
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3.1 Newton-Raphson method: 103

Quiz

Question 1: Write the method of Regula- falsi method to obtain a root of f (x) = 0 ?
Question 2: What is the disadvantage of the Regula- falsi method ?
Question 3: Find the smallest positive root of x = e2x, correct to two decimal places using Regula-
falsi method ?

3.1 Newton-Raphson method:

Figure 3.2: Newton-
Raphson method

Let a root of f (x) = 0 lie in the interval (a,b). Let x0 be an initial
approximation to the root in this interval. The Newton-Raphson method
to find this root is defined by

xk+1 = xk−
f (xk)

f ′(xk)
provided f

′
(xk) 6= 0

This method is called the Newton-Raphson method or simply the New-
ton’s method. The method is also called the tangent method.

� Example 3.6 Perform four iterations of the Newton’s method to find the smallest positive root of
the equation f (x) = x3−5x+1 = 0. �

Solution: We have f (0) = 1, f (1) =−3. Since, f (0) f (1)< 0, the smallest positive root lies in
the interval (0,1). Applying the Newton’s method, we obtain

xk+1 = xk−
f (xk)

f ′(xk)
= xk−

x3
k−5xk +1
3x2

k−5
=

2x3
k−1

3x2
k−5

, k = 0,1,2, ...

Let x0 = 0.5. We have the following results.

x1 =
2x3

0−1
3x2

0−5
=

2(0.5)3−1
3(0.5)2−5

= 0.176471,

x2 =
2x3

1−1
3x2

1−5
=

2(0.176471)3−1
3(0.176471)2−5

= 0.201568,

x3 =
2x3

2−1
3x2

2−5
=

2(0.201568)3−1
3(0.201568)2−5

= 0.201640,

x4 =
2x3

3−1
3x2

3−5
=

2(0.201640,)3−1
3(0.201640,)2−5

= 0.201640.

Therefore, the root correct to six decimal places is x≡ 0.201640.
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104 Chapter 3. Numerical Methods

� Example 3.7 Using Newton-Raphson method solve x log10 x = 12.34 with x0 = 10. �

Solution: Here f (x) = x log10 x−12.34. Then f ′(x) = log10 x+
1

loge 10
= log10 x+0.434294.

Applying the Newton’s method, we obtain

xk+1 = xk−
f (xk)

f ′(xk)
= xk−

xk log10 xk−12.34
log10 xk +0.434294

=
(0.434294)xk +12.34
log10 xk +0.434294

, k = 0,1,2, ...

Let x0 = 10. We have the following results.

x1 =
(0.434294)x0 +12.34
log10 x0 +0.434294

=
(0.434294)(10)+12.34

log10 10+0.434294
= 11.631465.

x2 =
(0.434294)x1 +12.34
log10 x1 +0.434294

=
(0.434294)(11.631465)+12.34
log10(11.631465)+0.434294

= 11.594870.

x3 =
(0.434294)x2 +12.34
log10 x2 +0.434294

=
(0.434294)(11.594870)+12.34
log10(11.594870)+0.434294

= 11.594854.

We have |x3− x2|= |11.594854−11.594870|= 0.000016. Therefore, We may take x≡ 11.594854
as the root correct to four decimal places.

� Example 3.8 Derive the Newton’s method for finding 1/N, where N > 0. Hence, find 1/17, using
the initial approximation as (i) 0.05, (ii) 0.15. Do the iterations converge �

Solution: Let x =
1
N

=⇒ N =
1
x

. Define a function f (x) =
1
x
−N so that f ′(x) = − 1

x2 .
Applying the Newton’s method, we obtain

xk+1 = xk−
f (xk)

f ′(xk)
= xk−

1
xk
−N(
− 1

x2
k

) = xk +
[
xk−Nx2

k

]
= 2xk−Nx2

k , k = 0,1,2, ...

(i) With N = 17, and x0 = 0.05, we obtain the sequence of approximations

x1 = 2x0−Nx2
0 = 2(0.05)−17(0.05)2 = 0.0575.

x2 = 2x1−Nx2
1 = 2(0.0575)−17(0.0575)2 = 0.058794.

x3 = 2x2−Nx2
2 = 2(0.058794)−17(0.058794)2 = 0.058823.

x4 = 2x3−Nx2
3 = 2(0.058823)−17(0.058823)2 = 0.058823.

Since, |x4− x3|= 0, the iterations converge to the root. The required root is 0.058823.
(ii) With N = 17, and x0 = 0.15, we obtain the sequence of approximations

x1 = 2x0−Nx2
0 = 2(0.15)−17(0.15)2 =−0.0825.

x2 = 2x1−Nx2
1 = 2(−0.0825.)−17(−0.0825.)2 =−0.280706.

x3 = 2x2−Nx2
2 = 2(−0.280706)−17(−0.280706)2 =−1.900942.
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3.1 Newton-Raphson method: 105

x4 = 2x3−Nx2
3 = 2(−1.900942)−17(−1.900942)2 =−65.23275.

We find that xk →−∞ as k increases. Therefore, the iterations diverge very fast. This shows the
importance of choosing a proper initial approximation.

� Example 3.9 Derive the Newton’s method for finding the qth root of a positive number N, N1/q,
where N > 0,q > 0. Hence, compute 171/3 correct to four decimal places, assuming the initial
approximation as x0 = 2. �

Solution: Let x = N1/q =⇒ N = xq. Define a function f (x) = xq−N so that f ′(x) = qxq−1.
Applying the Newton’s method, we obtain

xk+1 = xk−
f (xk)

f ′(xk)
= xk−

xq
k−N

qxq−1 =
(q−1)xq

k +N
qxq−1 , k = 0,1,2, ...

For computing 171/3, we have q = 3 and N = 17. Hence, the method becomes

xk+1 =
(3−1)x3

k +17
3x3−1

k

=
2x3

k +17
3x2

k
, k = 0,1,2, ...

With x0 = 2, we obtain the following results.

x1 =
2x3

0 +17
3x2

0
=

2(2)3 +17
3(2)2 = 2.75,

x2 =
2x3

1 +17
3x2

1
=

2(2.75)3 +17
3(2.75)2 = 2.582645,

x3 =
2x3

2 +17
3x2

2
=

2(2.582645)3 +17
3(2.582645)2 = 2.571332,

x4 =
2x3

3 +17
3x2

3
=

2(2.571332)3 +17
3(2.571332)2 = 2.571282.

Since, |x4− x3| = |2.571282− 2.571332| = 0.00005., We may take x = 2.571282 as the required
root correct to four decimal places.

Quiz

Question 1: The Newton-Raphson method formula for finding the square root of a real number N
from the equation x2−N = 0 is,

1. xi+1 =
xi
2

2. xi+1 =
3xi
2

3. xi+1 =
1
2

(
xi +

N
xi

)
4. xi+1 =

1
2

(
3xi− N

xi

)
Question 2: Evaluate

√
142 , correct to three decimal places ?

Question 3: Write an iteration formula for finding the value of 1/N, where N is a real number.?



Le
ctu

re
Not

es

By

G.K
.P

ra
jap

at
i

LN
JP

IT
, C

ha
pr

a

106 Chapter 3. Numerical Methods

3.2 Difference Operator
3.2.1 Interpolation with equally spaced data

Let the data (xi, f (xi)) be given with uniform spacing, that is, the nodal points are given by xi =
x0 + ih, i = 0,1,2, ...,n. Now we define several finite difference operators and relation between these
finite difference operators.
Notation: We use the following notations as follows:

x0,x1 = x0 +h,x2 = x0 +2h, ...,xi = x0 + ih, and
f0 = f (x0), f1 = f (x1), f2 = f (x2), ..., fi = f (xi), ...

Definition 3.2.1 Shift Operator E: The Shift operator E is defined as

E f (x) = f (x+h)

In particular, E f (x0) = f (x0+h) = f (x1),E f (x1) = f (x0+2h) = f (x2), ...,E f (xi) = f (x0+(i+
1)h) = f (xi+1), ...

Therefore, the operator E when applied on f (x) shifts it to the value at the next nodal point. We have

E2 f (x) = E (E f (x)) = E ( f (x+h)) = f (x+2h).

In general, we have

Ek f (x) = f (x+ kh), where k is any real number.

For example: E1/2 [ f (x)] = f (x+
1
2

h).

Definition 3.2.2 Forward Operator ∆: The forward operator ∆ is defined as

∆ f (x) = f (x+h)− f (x)

In particular,

∆ f (x0) = f (x0 +h)− f (x0) = f (x1)− f (x0),

∆ f (x1) = f (x0 +2h)− f (x0 +h) = f (x2)− f (x1),

.

.

.

∆ f (xi) = f (x0 +(i+1)h)− f (x0 + ih) = f (xi+1)− f (xi),

These differences are called the first forward differences.

The second forward difference is defined by

∆
2 f (x) = ∆(∆ f (x)) = ∆( f (x+h)− f (x)) = ∆ f (x+h)−∆ f (x)

= { f (x+2h)− f (x+h)}−{ f (x+h)− f (x)}
= f (x+2h)−2 f (x+h)+ f (x)

The forward differences can be written in a tabular form as in Table 3.1
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3.2 Difference Operator 107

x f (x) ∆ f (x) ∆2 f (x) ∆3 f (x) ∆4 f (x)
x0 f (x0)

∆ f (x0) =
f (x1)− f (x0)

x1 f (x1)
∆2 f (x0) =

∆ f (x1)−∆ f (x0)

∆ f (x1) =
f (x2)− f (x1)

∆3 f (x0) =
∆2 f (x1)−∆2 f (x0)

x2 f (x2)
∆2 f (x1) =

∆ f (x2)−∆ f (x1)
∆4 f (x0) =

∆3 f (x1)−∆3 f (x0)

∆ f (x2) =
f (x3)− f (x2)

∆3 f (x1) =
∆2 f (x2)−∆2 f (x1)

x3 f (x3)
∆2 f (x2) =

∆ f (x3)−∆ f (x2)

∆ f (x3) =
f (x4)− f (x3)

x4 f (x4)

Table 3.1: Forward Difference Table
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108 Chapter 3. Numerical Methods

� Example 3.10 Construct the forward difference table for the data

x −1 0 1 2
f (x) −8 3 1 12

�

Solution: We have the following difference table:

x f (x) ∆ f (x) ∆2 f (x) ∆3 f (x)
−1 −8

3− (−8) = 11
0 3 −2−11 =−13

1−3 =−2 13+13 = 26
1 1 11+2 = 13

12−1 = 11
2 12

Table 3.2: Forward Difference Table

Definition 3.2.3 Backward Difference Operator ∇: The Backward difference operator ∇ is
defined as

∇ f (x) = f (x)− f (x−h)

In particular,

∇ f (x1) = f (x0 +h)− f (x0) = f (x1)− f (x0),

∇ f (x2) = f (x0 +2h)− f (x0 +h) = f (x2)− f (x1),

.

.

.

∇ f (xi+1) = f (x0 +(i+1)h)− f (x0 + ih) = f (xi+1)− f (xi),

These differences are called the first backward differences.

The second backward difference is defined by

∇
2 f (x) = ∇(∇ f (x)) = ∇( f (x)− f (x−h)) = ∇ f (x)−∇ f (x−h)

= { f (x)− f (x−h)}−{ f (x−h)− f (x−2h)}
= f (x)−2 f (x−h)+ f (x−2h)
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3.2 Difference Operator 109

x f (x) ∇ f (x) ∇2 f (x) ∇3 f (x) ∇4 f (x)
x0 f (x0)

∇ f (x0) =
f (x1)− f (x0)

x1 f (x1)
∇2 f (x0) =

∇ f (x1)−∇ f (x0)

∇ f (x1) =
f (x2)− f (x1)

∇3 f (x0) =
∇2 f (x1)−∇2 f (x0)

x2 f (x2)
∇2 f (x1) =

∇ f (x2)−∇ f (x1)
∇4 f (x0) =

∇3 f (x1)−∇3 f (x0)

∇ f (x2) =
f (x3)− f (x2)

∇3 f (x1) =
∇2 f (x2)−∇2 f (x1)

x3 f (x3)
∇2 f (x2) =

∇ f (x3)−∇ f (x2)

∇ f (x3) =
f (x4)− f (x3)

x4 f (x4)

Table 3.3: Backward Difference Table

The backward differences can be written in a tabular form as in Table 3.3

� Example 3.11 Construct the backward difference table for the data

x −1 0 1 2
f (x) −8 3 1 12

�

Solution: We have the following difference table:

3.2.2 Relation Between finite difference operator
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110 Chapter 3. Numerical Methods

x f (x) ∇ f (x) ∇2 f (x) ∇3 f (x)
−1 −8

3− (−8) = 11
0 3 −2−11 =−13

1−3 =−2 13+13 = 26
1 1 11+2 = 13

12−1 = 11
2 12

Table 3.4: Backward Difference Table

Definition 3.2.4 Central difference operator δ : The central difference operator is defined as

δ f (x) = f (x+
h
2
)− f (x− h

2
)

Definition 3.2.5 Average (Mean) operator µ: The central difference operator is defined as

µ f (x) =
f (x+

h
2
)+ f (x− h

2
)

2

Prove that: (i) ∆ = E−1 (ii) ∆−∇ = ∇∆ (iii) (1+∆)(1−∇) = 1

(iv) µ =
1
2
[
E1/2 +E−1/2

]
(v) δ = ∇(1−∇)−1/2 (vi) µ =

[
1+

δ 2

4

]1/2

(vii) E = ehD, where D =
d
dx

.

Proof: (i) We know that E f (x) = f (x+h). Therefore,

∆ f (x) = f (x+h)− f (x) =⇒ ∆ f (x) = E f (x)− f (x) =⇒ ∆ = E−1 (3.1)

(ii) L.H.S

(∆−∇) f (x) = ∆ f (x)−∇ f (x)

= { f (x+h)− f (x)}−{ f (x)− f (x−h)}
= f (x+h)−2 f (x)+ f (x−h)

R.H.S

(∇∆) f (x) = ∇{∆ f (x)}
= ∇{ f (x+h)− f (x)}
= {∇ f (x+h)−∇ f (x)}
= {( f (x+h)− f (x))− ( f (x)− f (x−h)}
= f (x+h)−2 f (x)+ f (x−h)

Thus L.H.S.= R.H.S.
(iii) We know that ∇ f (x) = f (x)− f (x−h) =⇒ ∇ f (x) = f (x)−E−1 f (x) =⇒ ∇ = 1−E−1 =⇒
1−∇ = E−1 and ∆ = E−1 =⇒ 1+∆ = E. Therefore,

(1+∆)(1−∇) = (E)(E−1) = 1
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3.3 Newton’s Forward Difference Interpolation Formula 111

(iv) We know that

µ f (x) (3.2)

=
1
2

[
f (x+

h
2
)+ f (x− h

2
)

]
=

1
2

[
E1/2 f (x)+E−1/2 f (x)

]
µ f (x) =

1
2

[
E1/2 +E−1/2

]
f (x).

(v) We know that 1−∇ = E−1Therefore,

R.H.S. = ∇(1−∇)−1/2 f (x)

= ∇(E−1)−1/2 f (x)

= ∇

{
(E1/2) f (x)

}
= ∇ f (x+

h
2
)

= f (x+
h
2
)− f (x+

h
2
−h)

= f (x+
h
2
)− f (x+

−h
2
)

= δ f (x) = L.H.S.

(vi) Try Yourself.
(v) We know that the Taylor’s series

E f (x) = f (x+h)

= f (x)+h f ′(x)+
h2

2
f ′′(x)+ ...

= f (x)+hD f (x)+
h2

2
D2 f (x)+ ...

=

[
1+hD+

h2

2
D2 + ...

]
f (x)

E f (x) = ehD f (x).

3.3 Newton’s Forward Difference Interpolation Formula

Newton’s Forward Interpolation formula: Let x0,x1,x2, ...,xn be the equally spaced data and h
be the step length in the given data. In terms of the divided differences, we have the interpolation
formula as

f (x) = f (x0)+(x− x0) f [x0,x1]+ (x− x0)(x− x1) f [x0,x1,x2]+ ...

Using the relations for the divided differences

f [x0,x1, ...,xn] =
1

n!hn ∆n f (x0)

we get
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112 Chapter 3. Numerical Methods

f (x) = f (x0)+(x− x0)
∆ f (x0)

1!h
+(x− x0)(x− x1)

∆2 f (x0)

2!h2 +(x− x0)(x− x1)(x− x2)
∆3 f (x0)

3!h3 +

...+(x− x0)(x− x1)(x− x2)...(x− xn−1)
∆n f (x0)

n!hn .

This relation is called the Newton’s forward difference interpolation formula.

� Example 3.12 For the data construct the forward difference formula. Hence, find f (0.5). �

x −2 −1 0 1 2 3
f (x) 15 5 1 3 11 25

Solution: We have the following difference table: From the table, we conclude that the data

x f (x) ∆ f (x) ∆2 f (x) ∆3 f (x) ∆4 f (x) ∆5 f (x)
−2 15

−10
−1 5 6

−4 0
0 1 6 0

2 0 0
1 3 6 0

8 0
2 11 6

14
3 25

Table 3.5: Forward Difference Table

represents a quadratic polynomial. We have h = 1. The Newton’s forward difference formula is
given by

f (x) = f (x0)+(x− x0)
∆ f (x0)

1!h
+(x− x0)(x− x1)

∆2 f (x0)

2!h2 +(x− x0)(x− x1)(x− x2)
∆3 f (x0)

3!h3 +

(x− x0)(x− x1)(x− x2)(x− x3)
∆4 f (x0)

4!h4 +(x− x0)(x− x1)(x− x2)(x− x3)(x− x4)
∆5 f (x0)

5!h5 .

By putting the required values from the table we have,

f (x) = 15+(x+2)
(−10)
1!.1

+(x+2)(x+1)
6

2!12 +(x+2)(x+1)(x−0)
0

3!13 +(x+2)(x+1)(x−

0)(x−1)
0

4!14 +(x+2)(x+1)(x−0)(x−1)(x−2)
0

5!15 .

f (x) = 15+(x+2)(−10)+(x+2)(x+1)(3) = 15−10x−20+3x2 +9x+6 = 3x2− x+1.

We obtain f (0.5) = 3(0.5)2−0.5+1 = 0.75−0.5+1 = 1.25.
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� Example 3.13 A third degree polynomial passes through the points (0,−1),(1,1),(2,1)and(3,−2).
Determine this polynomial using Newton’s forward interpolation formula. Hence, find the value at
1.5. �

Solution: We have the following difference table: From the table, we conclude that the data

x f (x) ∆ f (x) ∆2 f (x) ∆3 f (x)
0 −1

2
1 1 −2

0 −1
2 1 −3

−3
3 −2

Table 3.6: Forward Difference Table

represents a cubic polynomial. We have h = 1. The Newton’s forward difference formula is given by

f (x) = f (x0)+(x− x0)
∆ f (x0)

1!h
+(x− x0)(x− x1)

∆2 f (x0)

2!h2 +(x− x0)(x− x1)(x− x2)
∆3 f (x0)

3!h3 .

By putting the required values from the table we have,

f (x) = (−1)+(x−0)
2

1!.1
+(x−0)(x−1)

−2
2!12 +(x−0)(x−1)(x−2)

−1
3!13 .

f (x) =−1+2x− x(x−1)− 1
6

x(x−1)(x−2) =−1+2x− x2 + x− 1
6
(x3−3x2 +2x)

f (x) =−1+(2−2/6+1)x− (1−3/6)x2−1/6x3 =−1+(8/3)x− (1/2)x2− (1/6)x3

We obtain f (1.5) =−1+(8/3)(1.5)− (1/2)(1.5)2− (1/6)(1.5)3 = 1.3125.

3.4 Newton’s Backward Difference Interpolation Formula
Newton’s Backward Interpolation formula Let x0,x1,x2, ...,xn be the equally spaced data and h
be the step length in the given data. Again, we use the Newton’s divided difference interpolation
polynomial to derive the Newton’s backward difference interpolation formula. Since, the divided
differences are symmetric with respect to their arguments, we write the arguments of the divided
differences in the order xn,xn−1, ...,x1,x0. The Newton’s divided difference interpolation polynomial
can be written as

f (x) = f (xn)+(x− xn) f [xn,xn−1]+ (x− xn)(x− xn−1) f [xn,xn−1,xn−2]+ ...+(x− xn)(x−
xn−1)...(x− x1) f [xn,xn−1,xn−2, ...,x1,x0]

Since, the divided differences are symmetric with respect to their arguments, we have

f [xn,xn−1, ...,x0] = f [x0,x1, ...,xn] =
1

n!hn ∇n f (xn)
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114 Chapter 3. Numerical Methods

Thus we obtain the Newton’s backward difference interpolation formula as

f (x) = f (xn)+(x− xn)
∇ f (xn)

1!h
+(x− xn)(x− xn−1)

∇2 f (xn)

2!h2 +(x− xn)(x− xn−1)(x−

xn−2)
∇3 f (xn)

3!h3 + ...+(x− xn)(x− xn−1)(x− xn−2)...(x− x1)
∇n f (xn)

n!hn .

� Example 3.14 Using Newton’s backward difference interpolation, interpolate at x = 1.0 from the
following data. �

x 0.1 0.3 0.5 0.7 0.9 1.1
f (x) −1.699 −1.073 −0.375 0.443 1.429 2.631

Solution: We have the following difference table: From the table, We have h = 0.2. The Newton’s

x f (x) ∇ f (x) ∇2 f (x) ∇3 f (x) ∇4 f (x) ∇5 f (x)
0.1 −1.699

0.626
0.3 −1.073 0.072

0.698 0.048
0.5 −0.375 0.120 0

0.818 0.048 0
0.7 0.443 0.168 0

0.986 0.048
0.9 1.429 0.216

1.202
1.1 2.631

Table 3.7: Backward Difference Table

backward difference formula is given by

f (x) = f (xn)+(x−xn)
∇ f (xn)

1!h
+(x−xn)(x−xn−1)

∇2 f (xn)

2!h2 +(x−xn)(x−xn−1)(x−xn−2)
∇3 f (xn)

3!h3 .

By putting the required values from the table we have,

f (x) = 2.631+(x−1.1)
1.202

1!(0.2)
+(x−1.1)(x−0.9)

0.216
2!(0.2)2 +(x−1.1)(x−0.9)(x−0.7)

0.048
3!(0.2)3 .

f (x) = 2.631+6.01(x−1.1)+2.7(x−1.1)(x−0.9)+(x−1.1)(x−0.9)(x−0.7).

Since, we have not been asked to find the interpolation polynomial, we may not simplify this
expression. At x = 1.0, we obtain
f (1.0) = 2.631+6.01(1.0−1.1)+2.7(1.0−1.1)(1.0−0.9)+(1.0−1.1)(1.0−0.9)(1.0−0.7)
= 2.631+6.01(−0.1)+2.7(−0.1)(0.1)+(−0.1)(0.1)(−0.3) = 2.004.



Le
ctu

re
Not

es

By

G.K
.P

ra
jap

at
i

LN
JP

IT
, C

ha
pr

a
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Quiz

Question 1: For the following data, calculate the differences and obtain the Newton’s forward and
backward difference interpolation polynomials. Are these polynomials different? Interpolate at
x = 0.25 and x = 0.35.

x 0.1 0.2 0.3 0.4 0.5
f(x) 1.40 1.56 1.76 2.00 2.28

Question 2: Give the relation between the divided differences and forward or backward differences.
Question 3: Can we decide the degree of the polynomial that a data represents by writing the
forward or backward difference tables?

Definition 3.4.1 Divided Difference Let the (xi, f (xi)), i= 0,1,2, . . . ,n be given unequal spaced
data. We define the divided differences as follows:
First divided difference: Consider any two consecutive data values (xi, f (xi)),(xi+1, f (xi+1)).
Then, we define the first divided difference as

f [xi,xi+1] =
f (xi+1)− f (xi)

xi+1− xi
.

In particular,

f [x0,x1] =
f (x1)− f (x0)

x1− x0
, f [x1,x2] =

f (x2)− f (x1)

x2− x1
, f [x2,x3] =

f (x3)− f (x2)

x3− x2
, ...

Second divided difference: Consider any three consecutive data values (xi, f (xi)),(xi+1, f (xi+1)),(xi+2, f (xi+2)).
Then, we define the second divided difference as

f [xi,xi+1,xi+2] =
f [xi+1,xi+2]− f [xi,xi+1]

xi+2− xi
.

In particular,

f [x0,x1,x2] =
f [x2,x1]− f [x1,x0]

x2− x0
, f [x1,x2,x3] =

f [x3,x2]− f [x2,x1]

x3− x1
, ...

� Example 3.15 Find the second divided difference of f (x) = 1/x, using the points a,b,c. �

Solution: We have

f [a,b] =
f (b)− f (a)

b−a
=

(1/b)− (1/a)
b−a

=
(a−b)/ab

b−a
=− 1

ab

f [b,c] =
f (c)− f (b)

c−b
=

(1/c)− (1/b)
c−b

=
(b− c)/bc

c−b
=− 1

bc

f [a,b,c] =
f [b,c]− f [a,b]

c−a
=

(−1/bc)− (−1/ab)
c−a

=
1

abc

� Example 3.16 Obtain the divided difference table for the data

x -1 0 2 3
f(x) -8 3 1 12

�

Solution: We have the following divided difference table:
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116 Chapter 3. Numerical Methods

x f (x) f irst D.D. Second D.D. T hird D.D.

−1 −8
3− (−8)
0− (−1)

= 11

0 3
−1−11
2− (−1)

=−4

1−3
2−0

=−1
4− (−4)
3− (−1)

= 2

2 1
11− (−1)

3−0
= 4

12−1
3−2

= 11

3 12

Table 3.8: Divided Difference Table

3.5 Newton Divided difference Interpolation
Definition 3.5.1 Newton Divided Difference Interpolation Let the (xi, f (xi)), i = 0,1,2, . . . ,n
be given unequal spaced data. We define the Newton divided difference interpolation formula as
follows:

f (x) = f (x0)+(x− x0) f [x0,x1]+ (x− x0)(x− x1) f [x0,x1,x2]+ ...+(x− x0)(x− x1)...(x−
xn−1) f [x0,x1,x2, ...,xn].

� Example 3.17 Find f (x) as a polynomial in x for the following data by Newton’s divided
difference formula

x −4 −1 0 2 5
f(x) 1245 33 5 9 1335

�

Solution: We form the divided difference table for the given data. The Newton’s divided difference
formula gives

f (x) = f (x0)+(x− x0) f [x0,x1]+ (x− x0)(x− x1) f [x0,x1,x2]

+ (x− x0)(x− x1)(x− x2) f [x0,x1,x2,x3]

+ (x− x0)(x− x1)(x− x2)(x− x3) f [x0,x1,x2,x3,x4].

= 1245+(x+4)(−404)+(x+4)(x+1)(94)+(x+4)(x+1)x(−14)

+ (x+4)(x+1)x(x−2)(3).

= 1245−404x−1616+(x2 +5x+4)(94)+(x3 +5x2 +4x)(−14)+(x4 +3x3−6x2−8x)(3).

= 3x4−5x3 +6x2−14x+5.
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3.5 Newton Divided difference Interpolation 117

x f (x) f irst D.D. Second D.D. T hird D.D. Fourth D.D.

−4 1245
33−1245
−1− (−4)

=−404

−1 33
−28− (−404)

0− (−4)
= 94

5−33
0− (−1)

=−28
10− (94)
2− (−4)

=−14

0 5
2− (−28)
2− (−1)

= 10
13− (−14)
5− (−4)

= 3

9−5
2−0

= 2
88−10

5− (−1)
= 13

2 9
442− (2)

5−0
= 88

1335−9
5−2

= 442

5 1335

Table 3.9: Divided Difference Table

� Example 3.18 Find f (x) as a polynomial in x for the following data by Newton’s divided
difference formula

x 1 3 4 5 7 10
f (x) 3 31 69 131 351 1011

Hence, interpolate at x = 3.5 and x = 8.0. Also find, f ′(3) and f ′′(1.5).

�

Solution: We form the divided difference table for the given data.

x f (x) f irst D.D. Second D.D. T hird D.D. Fourth D.D. Fi f th D.D.

1 3
14

3 31 8
38 1

4 69 12 0
62 1 0

5 131 16 0
110 1

7 351 22
220

10 1011

Table 3.10: Divided Difference Table
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118 Chapter 3. Numerical Methods

The Newton’s divided difference formula gives

f (x) = f (x0)+(x− x0) f [x0,x1]+ (x− x0)(x− x1) f [x0,x1,x2]+ (x− x0)(x− x1)(x− x2) f [x0,x1,x2,x3]

+ (x− x0)(x− x1)(x− x2)(x− x3) f [x0,x1,x2,x3,x4]

+ (x− x0)(x− x1)(x− x2)(x− x3)(x− x4) f [x0,x1,x2,x3,x4,x5].

= 3+(x−1)(14)+(x−1)(x−3)(8)+(x−1)(x−3)(x−4)(1).

= 3+14x−14+8x2−32x+24+ x3−8x2 +19x−12 = x3 + x+1.

Hence f (3.5) = P3(3.5) = (3.5)3+ 3.5+ 1 = 47.375, and f (8.0) = P3(8.0) = (8.0)3+ 8.0+ 1 =
521.0.
Now, P′3(x) = 3x2 +1, and P′′3 (x) = 6x.
Therefore, f ′(3) = P′(3) = 3(9)+1 = 28, f ′′(1.5) = P′′3 (1.5) = 6(1.5) = 9.

3.6 Lagrange’s Interpolation formula:
Let the data

x x0 x1 x2 ... xn

f(x) f (x1) f (x2) f (x2) ... f (xn)

be given at distinct unevenly spaced points or non-uniform points x0,x1, ...,xn. This data may also
be given at evenly spaced points. For this data, we can fit a unique polynomial of degree ≤ n. Since
the interpolating polynomial must use all the ordinates f (x0), f (x1), ... f (xn), it can be written as a
linear combination of these ordinates. That is, we can write the polynomial as

Pn(x) = l0(x) f (x0)+ l1(x) f (x1)+ ...+ ln(x) f (xn)

where

li(x) =
(x− x0),(x− x1),(x− x2), ...,(x− xi−1),(x− xi+1), ...,(x− xn)

(xi− x0),(xi− x1),(xi− x2), ...,(xi− xi−1),(xi− xi+1), ...,(xi− xn)

� Example 3.19 Use Lagrange’s formula, to find the quadratic polynomial that takes the values

x 0 1 3
f(x) 0 1 0

�

Solution: Since f (x0) and f (x2) are zero, we need to compute l1(x) only. We have

l1(x) =
(x− x0)(x− x2)

(x1− x0)(x1− x2)
=

(x−0)(x−3)
(1−0)(1−3)

=−1
2
(x2−3x)

The Lagrange quadratic polynomial is given by

P2(x) = f (x) = l0 f (x0)+ l1 f (x1)+ l2 f (x2) = 0+−1
2
(x2−3x)(1)+0 =

1
2
(3x− x2).

� Example 3.20 Construct the Lagrange interpolation polynomial for the data

x −1 1 4 7
f (x) −2 0 63 342
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3.6 Lagrange’s Interpolation formula: 119

Hence, interpolate at x = 5. �

Solution: Since f (x1) is zero, we need to compute l0(x), l2(x), l3(x) only. We have

l0(x) =
(x− x1)(x− x2)(x− x3)

(x0− x1)(x0− x2)(x0− x3)
=

(x−1)(x−4)(x−7)
(−1−1)(−1−4)(−1−7)

=− 1
80

(x3−12x2 +39x−28).

l2(x) =
(x− x0)(x− x1)(x− x3)

(x2− x0)(x2− x1)(x2− x3)
=

(x+1)(x−1)(x−7)
(4+1)(4−1)(4−7)

=− 1
45

(x3−7x2− x+7).

l3(x) =
(x− x0)(x− x1)(x− x2)

(x3− x0)(x3− x1)(x3− x2)
=

(x+1)(x−1)(x−4)
(7+1)(7−1)(7−4)

=
1

144
(x3−4x2− x+4).

The Lagrange quadratic polynomial is given by

f (x) = l0 f (x0)+ l1 f (x1)+ l2 f (x2)+ l3 f (x3)

= − 1
80

(x3−12x2 +39x−28)(−2)+0− 1
45

(x3−7x2− x+7)(63)+
1

144
(x3−4x2− x+4)(342)

=

(
1
40
− 7

5
+

171
72

)
x3 +

(
− 3

10
+

49
5
− 171

18

)
x2 +

(
39
40

+
7
5
− 171

72

)
x+
(
− 7

10
− 49

5
+

171
8

)
= x3−1.

Hence, f (5) = P3(5) = 53−1 = 124.

� Example 3.21 Given that f (0) = 1, f (1) = 3, f (3) = 55, find the unique polynomial of degree 2
or less, which fits the given data. �

Solution: We have x0 = 0, f (x0) = 1,x1 = 1, f (x1) = 3,x2 = 3, f (x2) = 55. The Lagrange
fundamental polynomials are given by

l0(x) =
(x− x1)(x− x2)

(x0− x1)(x0− x2)
=

(x−1)(x−3)
(0−1)(0−3)

=
1
3
(x2−4x+3).

l1(x) =
(x− x0)(x− x2)

(x1− x0)(x1− x2)
=

(x−0)(x−3)
(1−0)(1−3)

=
1
2
(3x− x2).

l2(x) =
(x− x0)(x− x1)

(x2− x0)(x2− x1)
=

(x−0)(x−1)
(3−0)(3−1)

=
1
6
(x2− x).

The Lagrange quadratic polynomial is given by

P2(x) = f (x) = l0 f (x0)+ l1 f (x1)+ l2 f (x2)

=
1
3
(x2−4x+3)(1)+

1
2
(3x− x2)(3)+

1
6
(x2− x)(55)

= 8x2−6x+1.

Quiz

Question 1: Using the data sin(0.1) = 0.09983 and sin(0.2) = 0.19867, find an approximate value
of sin(0.15) by Lagrange interpolation.
Question 2: Give two uses of interpolating polynomials.
Question 3: Write the property satisfied by Lagrange fundamental polynomials li(x).
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120 Chapter 3. Numerical Methods

3.7 Numerical Integration
Numerical Integration using Trapezoidal rule:

This rule is also called the trapezeum rule. Let the curve y = f (x),a ≤ x ≤ b, be approximated
by the line joining the points P(a, f (a)),Q(b, f (b)) on the curve. Let the interval [a,b] be sub-
divided into N equal parts of length h. That is, h = (b− a)/N. The nodal points are given by
a = x0,x1 = x0 +h,x2 = x0 +2h, ...,xN = x0 +Nh = b. The Trapezoidal rule is defined as

I =
∫ b

a f (x)dx =
h
2
[ f (x0)+ f (xN)+2{ f (x1)+ f (x2)+ ...+ f (xN−1)}] .

Remarks: The trapezium rule produces exact results for polynomials of degree ≤ 1.

� Example 3.22 Using the trapezium rule, evaluate the integral I =
∫ 1

0
dx

x2 +6x+10
with 2 and 4

subintervals. Compare with the exact solution. Comment on the magnitudes of the errors obtained �

Solution: With N = 2 and 4, we have the following step lengths and nodal points.

N = 2, h =
b−a

N
=

1
2

. The nodes are 0,0.50,1.0.

We have the following tables of values.

x 0 0.50 1.0
f (x) 0.1 0.07547 0.05882

Now, we compute the value of the integral.

I1 =
∫

0

dx
x2 +6x+10

=
h
2
[ f (0)+ f (1.0)+2{ f (0.50)}]

= 0.50 [0.1+0.05882+2{0.07547}] .
= 0.07744.

N = 4, h =
b−a

N
=

1
4

. h = 0.25, The nodes are 0.0,0.25,0.5,0.75,1.0.

We have the following tables of values.

x 0.0 0.25 0.50 0.75 1.0
f (x) 0.1 0.08649 0.07547 0.06639 0.05882

Now, we compute the value of the integral.

I2 =
∫ 1

0

dx
x2 +6x+10

=
h
2
[ f (0.0)+ f (1.0)+2{ f (0.25)+ f (0.50)+ f (0.75)}]

= 0.125 [0.1+0.05882+2{0.08649+0.07547+0.06639}] .
= 0.07694.

The exact value of the integral is

I =
∫ 1

0
dx

x2 +6x+10
=
∫ 1

0
dx

(x+3)2 +1
=
[
tan−1(x+3)

]1
0 =

[
tan−1(4)− tan−1(3)

]
= 0.07677
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The errors in the solutions are the following:

|Exact− I1|= |0.07677−0.07744|= 0.00067.

|Exact− I2|= |0.07677−0.07694|= 0.00017.

We find that |Error in I2|=
1
4
|Error in I1|.

� Example 3.23 Evaluate I =
∫ 2

1
dx

5+3x
with 4 and 8 subintervals using the trapezium rule. Compare

with the exact solution and find the absolute errors in the solutions. Comment on the magnitudes of
the errors obtained. Find the bound on the errors. �

Solution: With N = 4 and 8, we have the following step lengths and nodal points.

N = 4, h =
b−a

N
=

1
4

. The nodes are 1,1.25,1.5,1.75,2.0.

We have the following tables of values.

x 1 1.25 1.50 1.75 2.00
f (x) 0.125 0.11429 0.10526 0.09756 0.09091

Now, we compute the value of the integral.

I1 =
∫ 2

1

dx
5+3x

=
h
2
[ f (1.0)+ f (2.0)+2{ f (1.25)+ f (1.50)+ f (1.75)}]

= 0.125 [0.125+0.09091+2{0.11429+0.10526+0.09756}] .
= 0.10627.

N = 8, h =
b−a

N
=

1
8

. The nodes are 1,1.125,1.25,1.375,1.5,1.675,1.75,1.875,2.0.

We have the following tables of values.

x 1 1.125 1.25 1.375 1.50 1.675 1.75 1.875 2.00
f (x) 0.125 0.11940 0.11429 0.10959 0.10526 0.10127 0.09756 0.09412 0.09091

Now, we compute the value of the integral.

I2 =
∫ 2

1

dx
5+3x

=
h
2
[ f (1.0)+ f (2.0)+2{ f (1.125)+ f (1.25)+ f (1.375)+ f (1.50)+ f (1.675)+ f (1.75)+ f (1.875)}]

= 0.0625 [0.125+0.09091+2{0.11940+0.11429+0.10959+0.10526+0.10127+0.09756+0.09412}] .
= 0.10618.

The exact value of the integral is

I =
∫ 2

1
dx

5+3x
=

1
3
[ln(5+3x)]21 =

1
3
[ln(11)− ln(8)] = 0.10615
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122 Chapter 3. Numerical Methods

The errors in the solutions are the following:

|Exact− I1|= |0.10615−0.10627|= 0.00012.

|Exact− I2|= |0.10615−0.10618|= 0.00003.

We find that |Error in I2|=
1
4
|Error in I1|.

Quiz

Question 1: Find the approximate value of I =
∫ 1

0
dx

1+ x
, using the trapezium rule with 2, 4 and 8

equal subintervals. Using the exact solution, find the absolute errors.
Question 2: What is the restriction in the number of nodal points, required for using the trapezium
rule for integrating I =

∫ b
a f (x)dx?

Question 3:What is the geometric representation of the trapezium rule for integrating I =
∫ b

a f (x)dx?

3.8 Numerical Integration using Simpson 1/3 rule or Simpson 3/8 rule:
Simpson 1/3 rule: We subdivide the given interval [a, b] into even number of subintervals of
equal length h. That is, we obtain an odd number of nodal points. We take the even number of
intervals as 2N. The step length is given by h = (b− a)/(2N). The nodal points are given by
a = x0,x1 = x0 +h,x2 = x0 +2h, ...,x2N = x0 +2Nh = b. Then, Simpson 1/3 rule is defined as

I =
∫ b

a f (x)dx =
h
3 [ f (x0)+ f (x2N)+4{ f (x1)+ f (x3)+ ...+ f (x2N−1)}+2{ f (x2)+ f (x4)+ ...+ f (x2N−2)}].

� Example 3.24 Find the approximate value of I =
∫ 1

0
dx

1+ x
, using the Simpson’s 1/3 rule with 2,

4 and 8 equal subintervals. Using the exact solution, find the absolute errors. �

Solution: With n = 2N = 2 or N = 1 we have the following step lengths and nodal points.

For N = 1, h =
b−a
2N

=
1−0

2
= 0.5, The nodes are 0,0.5,1.0.

We have the following tables of values.

x 0 0.5 1.0
f (x) 1 0.666667 0.5

Now, we compute the value of the integral.

I1 =
∫ 1

0

dx
1+ x

=
h
3
[ f (0)+ f (1.0)+4{ f (0.5)}]

=
0.5
3

[1.0+0.5+4{0.666667}] .

= 0.674444.

Again, with n = 2N = 4 or N = 2 we have the following step lengths and nodal points.
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For N = 2, h =
b−a
2N

=
1−0

4
= 0.25, The nodes are 0,0.25,0.5,0.75,1.0.

We have the following tables of values.

x 0 0.25 0.5 0.75 1.0
f (x) 1 0.8 0.666667 0.571429 0.5

Now, we compute the value of the integral.

I2 =
∫ 1

0

dx
1+ x

=
h
3
[ f (0)+ f (1.0)+4{ f (0.25)+ f (0.75)}+2{ f (0.5)}]

=
0.5
3

[1.0+0.5+4{0.8+0.571429}+2(0.666667)] .

= 0.693254.

Finally, with n = 2N = 8 or N = 4 we have the following step lengths and nodal points. For

N = 4, h =
b−a
2N

=
1−0

8
= 0.125,

The nodes are 0,0.125,0.250,0.375,0.5,0.625,0.75,0.875,1.0.

We have the following tables of values.

x 0 0.125 0.250 0.375 0.500 0.675 0.750 0.875 1.0
f (x) 1 0.888889 0.8 0.727273 0.666667 0.615385 0.571429 0.533333 0.5

Now, we compute the value of the integral.

I3 =
∫ 1

0

dx
1+ x

=
h
3
[ f (0)+ f (1.0)+4{ f (0.125)+ f (0.375)+ f (0.675)+ f (0.875)}+2{ f (0.25)+ f (0.5)+ f (0.75)}]

=
0.5
3

[1.0+0.5+4{0.888889+0.727273+0.615385+0.533333}+2{0.8+0.666667+0.571429}] .

= 0.693155.

The exact value of the integral is I = ln2 = 0.693147. The errors in the solutions are the following:

|Exact− I1|= |0.693147−0.694444|= 0.001297.

|Exact− I2|= |0.693147−0.693254|= 0.000107.

|Exact− I3|= |0.693147−0.693155|= 0.000008.

� Example 3.25 The velocity of a particle which starts from rest is given by the following table.

t(sec) 0 2 4 6 8 10 12 14 16 18 20
v( f t/sec) 0 16 29 40 46 51 32 18 8 3 0
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124 Chapter 3. Numerical Methods

Evaluate using Simpson’s 1/3 rule, the total distance traveled in 20 seconds. �

Solution: From the definition, we have

v =
ds
dt

or s =
∫

vdt

Starting from rest, the distance traveled in 20 seconds is

s =
∫ 20

0 vdt

The step length is h = 2. Using the Simpson’s rule, we obtain

s =
∫ 20

0
vdt

=
h
3
[ f (0)+ f (20)+4{ f (2)+ f (6)+ f (10)+ f (14)+ f (18)}+2{ f (4)+ f (8)+ f (12)+ f (16)}]

=
2
3
[0+0+4{16+40+51+18+3}+2{29+46+32+8}] .

= 494.667 f eet.

3.9 Simpson 3/8 rule:
In Simpson’s 3/8 rule, the number of subintervals is n = 3N. Hence, we have

h =
b−a
3N

.

and Simpson 3/8 rule is defined as

I =
∫ b

a f (x)dx =
3h
8
[ f (x0)+ f (x3N)+2{ f (x3)+ f (x6)+ ...+ f (x3N−3)}+

3{ f (x1)+ f (x2)+ ...+ f (x2N−2)+ f (x2N−1)}].

� Example 3.26 Evaluate I =
∫ 2

1
dx

5+3x
with 3 and 6 subintervals using Simpson’s 3/8 rule. Com-

pare with the exact solution. �

Solution: With N = 3 and 6, we have the following step lengths and nodal points.

N = 3, h =
b−a

N
=

1
3

. The nodes are 1,4/3,5/3,2.0.

We have the following tables of values.

x 1 4/3 5/3 2.00
f (x) 0.125 0.11111 0.10000 0.09091

Now, we compute the value of the integral.

I1 =
∫ 2

1

dx
5+3x

=
3h
8
[ f (1.0)+ f (2.0)+3{ f (4/3)+ f (5/3)}]

= 0.125 [0.125+0.09091+3{0.11111+0.10000}] .
= 0.10616.
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3.9 Simpson 3/8 rule: 125

N = 6, h =
b−a

N
=

1
6

. The nodes are 1,7/6,8/6,9/6,10/6,11/6,2.0.

We have the following tables of values.

x 1 7/6 8/6 9/6 10/6 11/6 2.00
f (x) 0.125 0.11765 0.11111 0.10526 0.10000 0.09524 0.09091

Now, we compute the value of the integral.

I2 =
∫ 2

1

dx
5+3x

=
3h
8
[ f (1.0)+ f (2.0)+2{ f (9/6)}+3{ f (7/6)+ f (8/6)+ f (10/6)+ f (11/6)}]

=
1
16

[0.125+0.09091+2{0.10526}+3{0.11765+0.11111+0.10000+0.09524}] .

= 0.10615.

The exact value of the integral is

I =
∫ 2

1
dx

5+3x
=

1
3
[ln(5+3x)]21 =

1
3
[ln(11)− ln(8)] = 0.10615

The errors in the solutions are the following:

|Exact− I1|= |0.10615−0.10616|= 0.00001.

|Exact− I2|= |0.10615−0.10615|= 0.00000.

The magnitude of the error for N = 3 is 0.00001 and for N = 6 the result is correct to all places.

Remarks: The Simpson 1/3 rule and Simpson 3/8 rule produces exact results for polynomials of
degree ≤ 3.

Quiz

Question 1: Find the approximate value of I =
∫ 2

1
dx

5+3x , using the Simpson 1/3 rule with 4 and 8
equal subintervals. Using the exact solution, find the absolute errors.
Question 2: What are the disadvantages of the Simpson’s 3/8 rule compared with the Simpson’s
1/3 rule?
Question 3: What is the restriction in the number of nodal points, required for using the Simpson’s
3/8 rule for integrating I =

∫ b
a f (x)dx?
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126 Chapter 3. Numerical Methods

3.10 Solution of ordinary differential equations by Taylor’s Series Method:
The Taylor’s series is defined as

yi+1 = yi +hy
′
i +

h2

2!
y
′′
i +

h3

3!
y
′′′
i + ...

� Example 3.27 Consider the initial value problem y′ = x(y+1),y(0) = 1. Compute y(0.2) with
h = 0.1 using Taylor series method of order two and fourth. If the exact solution is y =−1+2ex2/2,
find the magnitudes of the actual errors for y(0.2). �

Solution: We have y′ = f (x,y) = x(y+1), x0 = 0, y0 = 1 and h = 0.1
(i) Taylor series second order method.

yi+1 = yi +hy
′
i +

h2

2!
y
′′
i

We have y′′= xy′+y+1. With x0 = 0,y0 = 1, we get y′(0) = 0,y′′(0) = x0y′0+y0+1= 0+1+1= 2.

y(0.1) = y1 = y0 +(0.1)y
′
0 +

(0.1)2

2!
y
′′
0 = 1+0+(0.005)2 = 1.01

With x1 = 0.1,y1 = 1.01, we get y′1 = 0.1(1.01+1) = 0.201. and y′′1 = x1y′1+y1+1= (0.1)(0.201)+
1.01+1 = 2.0301.

y(0.2) = y2 = y1 +(0.1)y
′
1 +

(0.1)2

2!
y
′′
1 = 1.01+0.1(0.201)+0.005(2.0301) = 1.04025.

(ii) Taylor series fourth order method.

yi+1 = yi +hy
′
i +

h2

2!
y
′′
i +

h3

3!
y
′′′
i +

h4

4!
yiv

i

We have y′′ = xy′+ y+1,y′′′ = xy′′+2y′,yiv = xy′′′+3y′′.
With x0 = 0,y0 = 1, we get

y′0 = 0,y′′0 = 2,y′′′0 = x0y′′0 +2y′0 = 0,yiv
0 = x0y′′′0 +3y′′0 = 0+3(2) = 6.

y1 = y0 +(0.1)y
′
0 +

(0.1)2

2!
y
′′
0 +

(0.1)3

3!
y
′′′
0 +

(0.1)4

4!
yiv

0

= 1+0+0.005(2)+0+
0.0001

24
(6) = 1.010025.

With x1 = 0.1,y1 = 1.010025, we get

y′1 = 0.1(1.010025+1) = 0.201003.

y′′1 = x1y′′1 + y1 +1 = (0.1)(0.201003)+1.010025+1 = 2.030125.

y′′′1 = x1y′′1 +2y′1 = 0.1(2.030125)+2(0.201003) = 0.605019,

yiv
1 = x1y′′1 +3y′′1 = 0.1(0.605019)+3(2.030125) = 6.150877.
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3.11 Solution of ordinary differential equations by Euler’s method: 127

y2 = y1 +(0.1)y
′
1 +

(0.1)2

2!
y
′′
1 +

(0.1)3

3!
y
′′′
1 +

(0.1)4

4!
yiv

1

= 1.010025+0.1(0.201003)+0.005(2.030125)++
0.001

6
(0.605019)+

0.0001
24

(6.150877) =
1.040402.

The exact value is y(0.1) = 1.010025,y(0.2) = 1.040403.
The magnitudes of the actual errors at x = 0.2 are

Taylor series method of second order: |1.04025−1.040403|= 0.000152.

Taylor series method of fourth order: |1.040402−1.040403|= 0.000001.

3.11 Solution of ordinary differential equations by Euler’s method:
Consider a first order initial value problem defined as

y′ = f (x,y), y(x0) = y0

The Euler’s method is defined as

yn+1 = yn +h f (xn,yn).

� Example 3.28 Solve the initial value problem yy′ = x, y(0) = 1, using the Euler method in
0≤ x≤ 0.8, with h = 0.2 and h = 0.1. Compare the results with the exact solution at x = 0.8.. �

Solution: We have y′ = f (x,y) =
x
y

. The Euler’s method gives

yn+1 = yn +h f (xn,yn) = yn +h
(

xn

yn

)
.

Here h = 0.2,x0 = 0,y0 = 1. Now we have

y1 = y(x1) = y(0.2) = y0 +h
(

x0

y0

)
= 1+(0.2)(0) = 1.0

y2 = y(x2) = y(0.4) = y1 +h
(

x1

y1

)
= 1+(0.2)

(
0.2
1.0

)
= 1.04

y3 = y(x3) = y(0.6) = y2 +h
(

x2

y2

)
= 1.04+(0.2)

(
0.4
1.04

)
= 1.11692

y4 = y(x4) = y(0.8) = y3 +h
(

x3

y3

)
= 1.11692+(0.2)

(
0.6

1.11692

)
= 1.22436.

When h = 0.1, we have

y1 = y(x1) = y(0.1) = y0 +h
(

x0

y0

)
= 1+(0.2)(0) = 1.0
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128 Chapter 3. Numerical Methods

y2 = y(x2) = y(0.2) = y1 +h
(

x1

y1

)
= 1+(0.1)

(
0.1
1.0

)
= 1.01.

y3 = y(x3) = y(0.3) = y2 +h
(

x2

y2

)
= 1.01+(0.1)

(
0.2
1.01

)
= 1.02980.

y4 = y(x4) = y(0.4) = y3 +h
(

x3

y3

)
= 1.02980+(0.1)

(
0.3

1.02980

)
= 1.05893.

y5 = y(x5) = y(0.5) = y4 +h
(

x4

y4

)
= 1.05893+(0.1)

(
0.4

1.05893

)
= 1.09670.

y6 = y(x6) = y(0.6) = y5 +h
(

x5

y5

)
= 1.09670+(0.1)

(
0.5

1.09670

)
= 1.14229.

y7 = y(x7) = y(0.7) = y6 +h
(

x6

y6

)
= 1.14229+(0.1)

(
0.6

1.14229

)
= 1.19482.

y8 = y(x8) = y(0.8) = y7 +h
(

x7

y7

)
= 1.19482+(0.1)

(
0.7

1.19482

)
= 1.25341.

The exact solution is y =
√

x2 +1. At x = 0.8, the exact value is y(0.8) =
√

1.64 = 1.28062.
The magnitudes of the errors in the solutions are the following:

h = 0.2 : |1.28062−1.22436|= 0.05626.

h = 0.1 : |1.28062−1.25341|= 0.02721.

Quiz

Question 1: You are given the differential equation y′ = 6x where y = 2 for x = 0. The statement:
y = 2 for x = 0 is called ......
Question 2: Solve the initial value problem yy′ = x, y(0) = 1, using the Euler method in
0≤ x≤ 0.8, with h = 0.2 and h = 0.1. Compare the results with the exact solution at x = 0.8.

3.12 Modified Euler’s Method
� Example 3.29 Solve the following initial value problem using the modified Euler method with
h = 0.1 for x ∈ [0,0.3].

y′ = y+ x, y(0) = 1.

Compare with the exact solution y(x) = 2ex− x−1. �

Solution: Modified Euler’s method is given by

yn+1 = yn +h f
(

xn +
h
2
,yn +

h
2

f (xn,yn)

)
We have y′ = f (x,y) = y+ x,x0 = 0,y0 = 1 and h = 0.1. Therefore,
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3.12 Modified Euler’s Method 129

y(0.1) = y1 = y0 +h f
(

x0 +
h
2
,y0 +

h
2

f (x0,y0)

)
= 1.0+0.1 f

(
0+

0.1
2
,1+

0.1
2

f (0,1)
)

y1 = 1.0+0.1 f (0+0.05,1+0.05(1+0)) = 1+0.1 f (0.05,1.05)

y1 = 1+0.1(1.05+0.05) = 1.11.

Now, we have x1 = 0.1,y1 = 1.11,y′1 = f (x1,y1) = y1 + x1 = 1.11+0.1 = 1.21.

y(0.2) = y2 = y1 +h f
(

x1 +
h
2
,y1 +

h
2

f (x1,y1)

)
=

1.11+0.1 f
(

0.1+
0.1
2
,1.11+

0.1
2

f (0.1,1.11)
)

y2 = 1.11+0.1 f (0.1+0.05,1.11+0.05(1.11+0.1)) = 1.11+0.1 f (0.15,1.1705)

y1 = 1.11+0.1(1.1705+0.15) = 1.24205.

Again, we have x2 = 0.2,y2 = 1.24205,y′2 = f (x2) = y2 + x2 = 1.24205+0.2 = 1.44205.

y(0.3) = y3 = y2 +h f
(

x2 +
h
2
,y2 +

h
2

f (x2,y2)

)
=

1.24205+0.1 f
(

0.2+
0.1
2
,1.24205+

0.1
2

f (0.2,1.24205)
)

y3 = 1.24205+0.1 f (0.2+0.05,1.24205+0.05(1.44205)) = 1.24205+0.1 f (0.25,1.31415)

y1 = 1.11+0.1(1.31415+0.25) = 1.39846.

The exact solution at x1 = 0.1,y1 = 1.11,h = 0.1 is 1.11034, at x2 = 0.2,y2 = 1.24205,h = 0.1 is
1.24281 and x3 = 0.3,y3 = 1.39846,h= 0.1 is 1.39972. The magnitudes of the errors in the solutions
are the following:

At x = 0.1 : |1.11034−1.11|= 0.00034.

At x = 0.2 : |1.24281−1.24205|= 0.00076.

At x = 0.3 : |1.39972−1.39846|= 0.00126.

� Example 3.30 For the following initial value problem, obtain approximations to y(0.2) and y(0.4),
using the modified Euler method with h = 0.2.

y′ =−2xy2, y(0) = 1.

Compare with the exact solution y(x) = 1/(1+ x2). �

Solution: Modified Euler’s method is given by

yn+1 = yn +h f
(

xn +
h
2
,yn +

h
2

f (xn,yn)

)
We have y′ = f (x,y) =−2xy2,x0 = 0,y0 = 1 and h = 0.2. Therefore,
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130 Chapter 3. Numerical Methods

y(0.2) = y1 = y0 +h f
(

x0 +
h
2
,y0 +

h
2

f (x0,y0)

)
= 1.0+0.2 f

(
0+

0.2
2
,1+

0.2
2

f (0,1)
)

y1 = 1.0+0.2 f (0+0.1,1+0.1(0)) = 1+0.2 f (0.1,1)

y1 = 1+0.2(−2(0.1)(1)2 = 1−0.04 = 0.96.

Now, we have x1 = 0.2,y1 = 0.96,y′1 = f (x1,y1) =−2.x1.y2
1 =−2(0.2)(0.96)2 = ˘0.36864

y(0.4) = y2 = y1 +h f
(

x1 +
h
2
,y1 +

h
2

f (x1,y1)

)
=

0.96+0.2 f
(

0.2+
0.2
2
,0.96+

0.2
2

f (0.2,0.96)
)

y2 = 0.96+0.2 f (0.2+0.1,0.96+0.1(˘0.36864)) = 0.96+0.2 f (0.3,0.92314)

y1 = 0.96+0.2(−2)(0.3)(0.92314)2 = 0.85774.

The exact solution at x1 = 0.2,y1 = 0.96,h = 0.2 is 0.96154, at x2 = 0.4,y2 = 0.85774,h = 0.2 is
0.86207 The magnitudes of the errors in the solutions are the following:

At x = 0.2 : |0.96154−0.96|= 0.00154.

At x = 0.4 : |0.86207−0.85774|= 0.00433.

Solution of ordinary differential equations by Runge-Kutta method:
Second order Runge-Kutta method: Consider a first order initial value problem defined as

y′ = f (x,y),y(x0) = y0

The second order Runge-Kutta method is defined as

y1 = y0 +
1
2 {k1 + k2}

where

k1 = h f (x0,y0),
k2 = h f (x0 +h,y0 + k1)

Fourth order Runge-Kutta method: The fourth order Runge-Kutta method:

y1 = y0 +
1
6 {k1 +2k2 +2k3 + k4}

where

k1 = h f (x0,y0),
k2 = h f (x0 +

h
2 ,y0 +

k1
2 )

k3 = h f (x0 +
h
2 ,y0 +

k2
2 )

k4 = h f (x0 +h,y0 + k3)

� Example 3.31 Solve the initial value problem

y′ =−2xy2, y(0) = 1
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3.12 Modified Euler’s Method 131

with h = 0.2 on the interval [0,0.4]. Use (i) second order Runge-Kutta method;
(ii) the fourth order classical Runge-Kutta method. Compare with the exact solution y(x) = 1/(1+
x2). �

Solution: We have, x0 = 0,y0 = 1,h = 0.2 and f (x,y) =−2xy2

Second order Runge-Kutta Method

y1 = y0 +
1
2 {k1 + k2}

where

k1 = h f (x0,y0) = 0.2(−2x0y2
0) = (−0.4)(0)(1) = 0

and

k2 = h f (x0 +h,y0 + k1) = h(−2)(x0 +h)(y0 + k1)
2 = 0.2(−2)(0+0.2)(1+0)2 =−0.08

Therefore, by second order Runge-Kutta becomes

y1 = y(0.2) = y0 +
1
2 {k1 + k2}= 1+ 1

2 {0−0.08}= 0.96

Now, we have x1 = 0.2,y1 = 0.96, then

y2 = y1 +
1
2 {k

′
1 + k′2}

where

k′1 = h f (x1,y1) = 0.2(−2)(x1)(y2
1) = (−0.4)(0.2)(0.96)2 =−0.73728

and

k′2 = h f (x1 +h,y1 + k′1) = h(−2)(x1 +h)(y1 + k′1)
2 = 0.2(−2)(0.2+0.2)(0.96−0.73728)2 =

−0.00794

Therefore, by second order Runge-Kutta becomes

y2 = y(0.4) = y1 +
1
2 {k

′
1 + k′2}= 0.96+ 1

2 {−0.73728−0.00794}= 0.58739

Fourth order Runge-Kutta method: The fourth order Runge-Kutta method:

y1 = y0 +
1
6 {k1 +2k2 +2k3 + k4}

where

k1 = h f (x0,y0) =−2(0.2)(0)(1)2 = 0,

k2 = h f (x0 +
h
2 ,y0 +

k1
2 ) =−2h(x0 +

h
2)(y0 +

k1
2 )

2 =−2(0.2)(0+0.2/2)(1+0/2)2 =−0.04,

k3 = h f (x0 +
h
2 ,y0 +

k2
2 ) =−2(0.2)(0.1)(0.98)2 =−0.038416,

k4 = h f (x0 +h,y0 + k3) =−2(0.2)(0.2)(0.961584)2 =−0.0739715,

The fourth order Runge-Kutta method:
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132 Chapter 3. Numerical Methods

y1 = y0 +
1
6 {k1 +2k2 +2k3 + k4}= 1+

1
6
[0.0−0.08−0.076832−0.0739715] = 0.9615328.

Now, we have x1 = 0,y1 = 0.9615328.

k′1 = h f (x1,y1) =−2(0.2)(0.2)(0.9615328)2 =−0.0739636,

k′2 = h f (x1 +
h
2 ,y1 +

k1
2 ) =−2(0.2)(0.3)(0.924551)2 =−0.1025753,

k′3 = h f (x1 +
h
2 ,y1 +

k2
2 ) =−2(0.2)(0.3)(0.9102451)2 =−0.0994255,

k′4 = h f (x1 +h,y1 + k3) =−2(0.2)(0.4)(0.86210734)2 =−0.1189166,

y2 = y1 +
1
6 {k

′
1 +2k′2 +2k′3 + k′4}=

0.9615328+
1
6
[−0.0739636−0.2051506−0.1988510−0.1189166] = 0.8620525

Absolute errors in second order Runge-Kutta method.

At x = 0.2 : |0.9615385−0.96|= 0.0015385.

At x = 0.4 : |0.8620690−0.86030|= 0.0017690.

Absolute errors in fourth order Runge-Kutta method.

At x = 0.2 : |0.9615385−0.9615328|= 0.0000057.

At x = 0.4 : |0.8620690−0.8620525|= 0.0000165.

� Example 3.32 Given y′ = x3 + y,y(0) = 2, compute y(0.2), y(0.4) and y(0.6) using the Runge-
Kutta method of fourth order. �

Solution: Here we have x0 = 0,y0 = 2,h = 0.2 and f (x,y) = x3 + y
Fourth order Runge-Kutta method:

y1 = y0 +
1
6 {k1 +2k2 +2k3 + k4}

where

k1 = h f (x0,y0) = h(x3
0 + y0) = 0.2(0+2) = 0.4,

k2 = h f (x0 +
h
2 ,y0 +

k1
2 ) = 0.2 f (0.1,2.2) = (0.2)(2.201) = 0.4402,

k3 = h f (x0 +
h
2 ,y0 +

k2
2 ) = 0.2 f (0.1,2.2201) = (0.2)(2.2211) = 0.44422,

k4 = h f (x0 +h,y0 + k3) = 0.2 f (0.2,2.44422) = (0.2)(2.45222) = 0.490444,

The fourth order Runge-Kutta method:

y1 = y0 +
1
6 {k1 +2k2 +2k3 + k4}= 2+

1
6
[0.4+2(0.4402)+2(0.44422)+0.490444] = 2.443214.

Now, we have x1 = 0.2,y1 = 2.443214.
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3.13 Milne’s Predictor-Corrector Formula 133

k′1 = h f (x1,y1) = 0.2 f (0.2,2.443214) = (0.2)(2.451214) = 0.490243,

k′2 = h f (x1 +
h
2 ,y1 +

k1
2 ) = 0.2 f (0.3,2.443214+0.245122) = (0.2)(2.715336) = 0.543067,

k′3 = h f (x1 +
h
2 ,y1 +

k2
2 ) = 0.2 f (0.3,2.443214+0.271534) = (0.2)(2.741748) = 0.548350,

k′4 = h f (x1 +h,y1 + k3) = 0.2 f (0.4,2.443214+0.548350) = (0.2)(3.055564) = 0.611113,

y2 = y(0.4) = y1 +
1
6 {k

′
1 +2k′2 +2k′3 + k′4}=

2.443214+
1
6
[0.490243+2(0.543067)+2(0.548350)+0.611113] = 2.990579.

Now, we have x2 = 0.4,y2 = 2.990579.

k′′1 = h f (x2,y2) = 0.2 f (0.4,2.990579) = (0.2)(3.054579) = 0.610916,

k′′2 = h f (x2 +
h
2 ,y2 +

k1
2 ) == 0.2 f (0.5,2.990579+0.305458) = (0.2)(3.421037) = 0.684207,

k′′3 = h f (x2 +
h
2 ,y2 +

k2
2 ) = 0.2 f (0.5,2.990579+0.342104) = (0.2)(3.457683) = 0.691537,

k′′4 = h f (x2 +h,y2 + k3) = 0.2 f (0.6,2.990579+0.691537) = (0.2)(3.898116) = 0.779623.

y3 = y(0.6) = y2 +
1
6 {k

′′
1 +2k′′2 +2k′′3 + k′′4}=

2.990579+
1
6
[0.610916+2(0.684207)+2(0.691537)+0.779623] = 3.680917.

3.13 Milne’s Predictor-Corrector Formula
Milne’s Predictor-Corrector Formula: Let the first order initial value ordinary differential equa-

tion is
dy
dx

= f (x,y) with y(x0) = y0. Then the Milne’s Predictor Formula is defined as

y(p)
i+1 = yi−3 +

4h
3
[2 fi− fi−1 +2 fi−2] .

The method requires the starting values yi,yi−1,yi−2 and yi−3. In particular, this method requires the
starting values y0,y1,y2 and y3. and the Milne’s corrector Formula is defined as

y(c)i+1 = yi−1 +
h
3

[
f (xi+1,y

(p)
i+1)+4 fi + fi−1

]
.

Here fi = f (xi,yi), fi−1 = f (xi−1,yi−1), ...

� Example 3.33 Given y′= x3+y,y(0)= 2, the values y(0.2)= 2.073,y(0.4)= 2.452, and y(0.6)=
3.023 are got by Runge-Kutta method of fourth order. Find y(0.8) by Milne’s predictor-corrector
method taking h = 0.2. �

Solution: Milne’s predictor-corrector method is given by

y(p)
i+1 = yi−3 +

4h
3
[2 fi− fi−1 +2 fi−2] .

y(c)i+1 = yi−1 +
h
3

[
f (xi+1,y

(p)
i+1)+4 fi + fi−1

]
.
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134 Chapter 3. Numerical Methods

The method requires the starting values yi,yi−1,yi−2 and yi−3. That is, we require the values
y0,y1,y2,y3. Initial condition gives the value y0.
We are given that

f (x,y) = x3 + y,x0 = 0,y0 = 2,y(0.2) = y1 = 2.073,y(0.4) = y2 = 2.452,y(0.6) = y3 = 3.023.

Predictor application
For i = 3, we obtain

y(0)4 = y(p)
4 = y0 +

4h
3
[2 f3− f2 +2 f1] .

We have

f0 = f (x0,y0) = f (0,2) = 2, f1 = f (x1,y1) = f (0.2,2.073) = 2.081,

f2 = f (x2,y2) = f (0.4,2.452) = 2.516, f3 = f (x3,y3) = f (0.6,3.023) = 3.239.

y(0)4 = 2+
4(0.2)

3
[2(3.239)−2.516+2(2.081)] = 4.1664.

Corrector application
First iteration For i = 3, we get

y(1)4 = y(c)4 = y2 +
h
3

[
f (x4,y

(0)
4 )+4 f3 + f2

]
.

Now, f (x4,y
(0)
4 ) = f (0.8,4.1664) = 4.6784.

y(1)4 = 2.452+
0.2
3

[4.6784+4(3.239)+2.516] = 3.79536.

Second iteration

y(2)4 = y2 +
h
3

[
f (x4,y

(1)
4 )+4 f3 + f2

]
.

Now, f (x4,y
(1)
4 ) = f (0.8,4.6784) = 4.30736.

y(2)4 = 2.452+
0.2
3

[4.30736+4(3.239)+2.516] = 3.770624.

We have |y(2)4 − y(1)4 |= |3.770624−3.79536|= 0.024736.
The result is accurate to one decimal place.
Third iteration

y(3)4 = y2 +
h
3

[
f (x4,y

(2)
4 )+4 f3 + f2

]
.

Now, f (x4,y
(2)
4 ) = f (0.8,3.770624) = 4.282624.

y(3)4 = 2.452+
0.2
3

[4.282624+4(3.239)+2.516] = 3.768975.
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We have |y(3)4 − y(2)4 |= |3.768975−3.770624|= 0.001649.
The result is accurate to two decimal place.
Fourth iteration

y(4)4 = y2 +
h
3

[
f (x4,y

(3)
4 )+4 f3 + f2

]
.

Now, f (x4,y
(3)
4 ) = f (0.8,3.76897) = 4.280975.

y(4)4 = 2.452+
0.2
3

[4.280975+4(3.239)+2.516] = 3.768865.

We have |y(4)4 − y(3)4 |= |3.768865−3.768975|= 0.000100.
The result is accurate to three decimal place. The required result can be taken as y(0.8) = 3.7689.

� Example 3.34 Using Milne’s predictor-corrector method, find y(0.4) for the initial value problem
y′ = x2 + y2,y(0) = 1, with h = 0.1. Calculate all the required initial values by Euler’s method. The
result is to be accurate to three decimal places. �

Solution: Milne’s predictor-corrector method is given by

y(p)
i+1 = yi−3 +

4h
3
[2 fi− fi−1 +2 fi−2] .

y(c)i+1 = yi−1 +
h
3

[
f (xi+1,y

(p)
i+1)+4 fi + fi−1

]
.

The method requires the starting values yi,yi−1,yi−2 and yi−3. That is, we require the values
y0,y1,y2,y3. Initial condition gives the value y0.
We are given that

f (x,y) = x2 + y2,x0 = 0,y0 = 1.

Euler’s method gives

yi+1 = yi +h f (xi,yi) = yi +0.1(x2
i + y2

i )

With x0 = 0,y0 = 1, we get

y1 = y0 +0.1(x2
0 + y2

0) = 1.0+0.1(0+1.0) = 1.1.

y2 = y1 +0.1(x2
1 + y2

1) = 1.1+0.1(0.01+1.21) = 1.222.

y3 = y2 +0.1(x2
2 + y2

2) = 1.222+0.1[0.04+(1.222)2] = 1.375328.

Predictor application
For i = 3, we obtain

y(0)4 = y(p)
4 = y0 +

4h
3
[2 f3− f2 +2 f1] .

We have

f0 = f (x0,y0) = f (0,1) = 1, f1 = f (x1,y1) = f (0.1,1.1) = 1.22,
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f2 = f (x2,y2) = f (0.1,1.222) = 1.533284, f3 = f (x3,y3) = f (0.3,1.375328) = 1.981527.

y(0)4 = 1+
4(0.1)

3
[2(1.981527)−1.533284+2(1.22)] = 1.649303.

Corrector application
First iteration For i = 3, we get

y(1)4 = y(c)4 = y2 +
h
3

[
f (x4,y

(0)
4 )+4 f3 + f2

]
.

Now, f (x4,y
(0)
4 ) = f (0.4,1.649303) = 2.880200.

y(1)4 = 1.222+
0.1
3

[2.880200+4(1.981527)+1.533284] = 1.633320.

Second iteration

y(2)4 = y2 +
h
3

[
f (x4,y

(1)
4 )+4 f3 + f2

]
.

Now, f (x4,y
(1)
4 ) = f (0.4,1.633320) = 2.827734.

y(2)4 = 1.222+
0.1
3

[2.827734+4(1.981527)+1.533284] = 1.631571.

We have |y(2)4 − y(1)4 |= |1.631571−1.633320|= 0.001749.
The result is accurate to two decimal place.
Third iteration

y(3)4 = y2 +
h
3

[
f (x4,y

(2)
4 )+4 f3 + f2

]
.

Now, f (x4,y
(2)
4 ) = f (0.4,1.631571) = 2.822024.

y(3)4 = 1.222+
0.1
3

[2.822024+4(1.981527)+1.533284] = 1.631381.

We have |y(3)4 − y(2)4 |= |1.631381−1.631571|= 0.00019.
The result is accurate to three decimal place. The required result can be taken as y(0.4) = 1.63138.

3.14 Adams-Bashforth Predictor-Corrector Formula
The Adams-Bashforth predictor-corrector method is given by
Predictor P: Adams-Bashforth method of fourth order.

y(p)
i+1 = yi +

h
24

[55 fi−59 fi−1 +37 fi−2−9 fi−3] .

The method requires the starting values yi,yi−1,yi−2 and yi−3.
Corrector C: Adams-Moulton method of fourth order.

y(c)i+1 = yi +
h
24

[
9 f (xi+1,y

(p)
i+1)+19 fi−5 fi−1 + fi−2

]
.

The method requires the starting values yi,yi−1,yi−2.
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3.14 Adams-Bashforth Predictor-Corrector Formula 137

� Example 3.35 Using the Adams-Bashforth predictor-corrector equations, evaluate y(1.4), if y

satisfies
dy
dx

+
y
x
=

1
x2 and y(1) = 1,y(1.1) = 0.996,y(1.2) = 0.986,y(1.3) = 0.972. �

Solution: Adams-Bashforth method of fourth order.

y(p)
i+1 = yi +

h
24

[55 fi−59 fi−1 +37 fi−2−9 fi−3] .

The method requires the starting values yi,yi−1,yi−2 and yi−3.
Corrector C: Adams-Moulton method of fourth order.

y(c)i+1 = yi +
h
24

[
9 f (xi+1,y

(p)
i+1)+19 fi−5 fi−1 + fi−2

]
.

The method requires the starting values yi,yi−1,yi−2.

We have f (x,y) =
1
x2 −

y
x

, with h = 0.1, we are given the values y(1) = 1,y(1.1) = 0.996,y(1.2) =

0.986,y(1.3) = 0.972.
Predictor application
For i = 3, we obtain

y(p)
4 = y3 +

h
24

[55 f3−59 f2 +37 f1−9 f0] .

We have

f0 = f (x0,y0) = f (1,1) = 1−1 = 0, f1 = f (x1,y1) = f (1.1,0.996) =−0.079008,

f2 = f (x2,y2) = f (1.2,0.986) =−0.127222, f3 = f (x3,y3) = f (1.3,0.972) =−0.155976.

y(0)4 = y(p)
4 = 0.972+

0.1
24

[55(−0.155976)−59(−0.127222)+37(−0.079008)−9(0)] =
0.955351.

Corrector application
First iteration For i = 3, we get

y(c)4 = y(1)4 = y3 +
h

24

[
9 f (x4,y

(0)
4 )+19 f3−5 f2 + f1

]
.

Now, f (x4,y
(0)
4 ) = f (1.4,0.955351) =−0.172189.

y(1)4 = 0.972+
0.1
24

[9(−0.172189)+19(−0.155976)−5(−0.127222)+(−0.079008)] =
0.955516.

Second iteration

y(2)4 = y3 +
h
24

[
9 f (x4,y

(1)
4 )+19 f3−5 f2 + f1

]
.

Now, f (x4,y
(1)
4 ) = f (1.4,0.955516) =−0.172307.

y(1)4 = 0.972+
0.1
24

[9(−0.172307)+19(−0.155976)−5(−0.127222)+(−0.079008)] =
0.955512.
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138 Chapter 3. Numerical Methods

Now, we have |y(2)4 − y(1)4 |= |0.955512−0.955516|= 0.000004.
Therefore, y(1.4) = 0.955512. The result is correct to five decimal places.
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4. Power Series

4.1 What is a power series?
Many functions can be represented efficiently by means of infinite series. Examples we have seen in
calculus include the exponential function

ex = 1+ x+
1
2!

x2 +
1
3!

x3 + · · ·=
∞

∑
n=0

1
n!

xn, (4.1)

and the trigonometric functions,

cosx = 1− 1
2!

x2 +
1
4!

x4−·· ·=
∞

∑
k=0

(−1)k 1
(2k)!

x2k

and

sinx = x− 1
3!

x3 +
1
5!

x5−·· ·=
∞

∑
k=0

(−1)k 1
(2k+1)!

x2k+1.

An infinite series of this type is called a power series. To be precise, a power series about x0 is an
infinite sum of the form

a0 +a1(x− x0)+a2(x− x0)
2 + · · ·=

∞

∑
n=0

an(x− x0)
n,

where the an’s are constants.
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