

Lok Nayak Jai Prakash Institute of Technology Chapra, Bihar-841302

Dr. G.K. Prajapati

LNJPIT Chapra

Introduction

Mathematics-II (Complex Variable) Lecture Notes May 8, 2020

by

Dr. G.K.Prajapati Department of Applied Science and Humanities LNJPIT, Chapra, Bihar-841302

4 ∰ ► < E ►</p>

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Definition

A polynomial equation of the form

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0 = 0$$

is called an algebraic equation.

For Example: $3x^5 + 2x^3 - x^2 + 35 = 0$, $x^4 + 5x^2 + 7 = 0$, $-2x^2 - 3^x + 4 = 0$,

Definition

An equation which contains polynomials, exponential functions, logarithmic functions, trigonometric functions etc. is called a **transcendental equation**.

For Example: $xe^x - 2x = 0$, $x \tan x - \log x = 4$, $\sin^2 x + \cos x = 0$ are transcendental equations.

Dr. G.K. Prajapati

> LNJPIT, Chapra

Introduction

Definition

Root/zero: A number α , for which $f(\alpha) \equiv 0$ is called a root of the equation f(x) = 0, or a zero of f(x). Geometrically, a root of an equation f(x) = 0 is the value of x at which the graph of the equation y = f(x) intersects the x-axis.

A (1) < (1) < (1) </p>

1

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Theorem

Suppose the function f is continuous in [a,b] and f is differentiable on (a,b). If f(a) = f(b), then a number c in (a,b) exists with f'(c) = 0.

イロト イヨト イヨト イヨト

E

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Theorem

Intermediate Value Theorem: If f(x) is continuous on some interval [a, b] and f(a)f(b) < 0, then the equation f(x) = 0 has at least one real root or an odd number of real roots in the interval (a, b).

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Show that $x^5-2x^3+3x^2-1=0$ has a solution in the interval (0,1).

Solution: Consider the function defined by $x^5 - 2x^3 + 3x^2 - 1 = 0$. The function f is continuous on [0, 1]. In addition, Here f(0) = -1 < 0 and f(1) = 1 > 0. Therefore by, Intermediate Value Theorem there exist a number x with 0 < x < 1, for which $x^5 - 2x^3 + 3x^2 - 1 = 0$. Hence the given function has the solution in the interval (0, 1).

イロン イ部 とくほど くほとう ほ

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Bisection Method This method is applicable for numerically solving the equation f(x) = 0 for the real variable x, where f is a continuous function defined on an interval [a, b] and f(a)and f(b) have opposite signs. Then by the intermediate value theorem, the continuous function f must have at least one root in the interval (a, b). Now at each step, this method divides the interval in two interval by computing the midpoint c = (a+b)/2 of the interval and the value of the function f at that point c. Unless c is itself a root, there are now only two possibilities: either f(a) and f(c) have opposite signs or f(c)and f(b) have opposite signs. The method selects the subinterval that is guaranteed to be a root in the new interval. The process is continued until the interval is sufficiently small.

・回 と く ヨ と ・ ヨ と

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Explicitly, if f(a) and f(c) have opposite signs, then the method sets c as the new value for b, and if f(b) and f(c) have opposite signs then the method sets c as the new value for a. (If f(c) = 0 then c may be taken as the solution and the process stops.) In both cases, the new f(a) and f(b) have opposite signs, so the method is applicable to this smaller interval.

A (1) < (1) < (1) </p>

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Find the root of the equation $x^3 - x - 1 = 0$ by bisection method up to two places of decimal.

Solution: Here $f(x) = x^3 - x - 1$. Let $x_0 = 0$ so that $f(x_0 = 0) = -1 < 0$. and $x_1 = 2$ so that $f(x_1 = 2) = (2)^3 - (2) - 1 = 5 > 0$. Thus by intermediate value theorem the roots lies in the interval (0, 2). By using bisection method, the first approximation is

$$x_2 = \frac{x_0 + x_1}{2} = \frac{0+2}{2} = 1$$

Now $f(x_2 = 1) = (1)^3 - (1) - 1 = -1 < 0$. Since $f(x_1 = 2)f(x_2 = 1) = 5.(-1) = -5 < 0$. Therefore the roots lies in the interval $(x_2, x_1)i.e.(1, 2)$. Again by using bisection method, the second approximation is

Dr. G.K. Prajapati

Chapra

Introduction

Now $f\left(x_3 = \frac{3}{2}\right) = \left(\frac{3}{2}\right)^3 - \left(\frac{3}{2}\right) - 1 = \frac{7}{8} > 0$. Since $f(x_2 = 1)f(x_3 = 3/2) = (-1)(7/8) = -7/8 < 0$. Therefore the roots lies in the interval $(x_2, x_3)i.e.(1, 3/2)$. Again by using bisection method, the third approximation is

 $r_2 \pm r_2 = 1 \pm 2/9$

5

$$x_4 = \frac{x_2 + x_3}{2} = \frac{1 + 5/2}{2} = \frac{5}{4}$$

Now $f\left(x_4 = \frac{5}{4}\right) = \left(\frac{5}{4}\right)^3 - \left(\frac{5}{4}\right) - 1 = -\frac{19}{64} < 0$. Since $f(x_4 = 5/4)f(x_3 = 3/2) = (-19/64).(7/8) = 133/512 > 0$.
Therefore the roots lies in the interval $(x_4, x_3)i.e.(5/4, 3/2)$.
Repeating this process we get $x_5 = 11/8, x_6 = 21/16, x_7 = 43/32, x_8 = 85/64$. This process will be continue until the difference between last two approximation is less than 0.005.

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Using bisection method, find the root of the equation $3x - \sqrt{1 + \sin x} = 0.$

Solution: Here $f(x) = 3x - \sqrt{1 + \sin x}$. Let $x_0 = 0$ so that $f(x_0 = 0) = -1 < 0$. and $x_1 = 1$ so that $f(x_1 = 1) = 3(1) - \sqrt{1 + \sin(1)} = 3 - \sqrt{1 + 0.84} = 3 - 1.35 = 1.65 > 0$. Thus by intermediate value theorem the roots lies in the interval (0, 1). By using bisection method, the first approximation is

$$x_2 = \frac{x_0 + x_1}{2} = \frac{0+1}{2} = 1/2 = 0.5$$

(本間) (注) (注) (注)

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Now $f(x_2 = 0.5) = 3(0.5) - \sqrt{1 + \sin(0.5)} =$ $3 - \sqrt{1 + 0.479} = 1.5 - 1.216 = 0.28 > 0$. Since $f(x_0 = 0)f(x_2 = 0.5) = (-1)(0.28) = -0.28 < 0$. Therefore the roots lies in the interval $(x_0, x_2)i.e.(0, 0.5)$. Again by using bisection method, the second approximation is

$$x_3 = \frac{x_0 + x_2}{2} = \frac{0 + 0.5}{2} = 0.25$$

・日・ ・ ヨ・ ・ ヨ・

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Now $f(x_3 = 0.25) = 3(0.25) - \sqrt{1 + \sin(0.25)} = 0.75 - \sqrt{1 + 0.247} = 0.75 - 1.216 = -0.117 < 0$. Since $f(x_2 = 0.5)f(x_3 = 0.25) = (0.28)(-0.117) = -0.33 < 0$. Therefore the roots lies in the interval $(x_2, x_3)i.e.(0.5, 0.25)$. Again by using bisection method, the third approximation is

$$x_4 = \frac{x_2 + x_3}{2} = \frac{0.5 + 0.25}{2} = 0.35$$

A (1) > A (2) > A

Continuing this process we get the required answer.

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Thanks !!!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Ð,

Dr. G.K. Prajapati LNJPIT, Chapra Bisection Method...