

... Dr. G.K.

LNJPIT, **Chapra**

Lok Nayak Jai Prakash Institute of Technology Chapra, Bihar-841302

[Singularities](#page-13-0) Prajapati [Introduction](#page-1-0) Mathematics-II (Complex Variable) Lecture Notes April 30, 2020

by

Dr. G.K.Prajapati Department of Applied Science and Humanities

 \mathcal{A} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{B}

つくい

Dr. G.K. Prajapati

LNJPIT, **Chapra**

[Introduction](#page-1-0)

Definition

A zero of analytic function $f(x)$ is the value of z for which $f(z) = 0.$

Definition

SINGULAR POINT: A point at which a function $f(z)$ is not analytic is known as a singular point or singularity of the function.

K ロ ▶ K 御 ▶ K ミ ▶

 \rightarrow \equiv \rightarrow

 Ω

For Example: The function $\frac{1}{z-a}$ has a singular point at $z - a = 0$ or $z = a$.

Dr. G.K. Prajapati

LNJPIT, **Chapra**

[Introduction](#page-1-0)

Definition

Isolated singular point: If $z = a$ is a singularity of $f(z)$ and if there is no other singularity in the neighborhood of the point $z = a$, then $z = a$ is said to be an isolated singularity of the function $f(z)$; otherwise it is called **non-isolated**.

For Example: The function $\frac{1}{(z-a)(z-b)}$ has a singular point at $z = a, b$. Here in the neighborhood of a and b, there does not exits any other singularities. Hence a and b are isolated singularities.

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶

一く ヨート

つのへ

> Dr. G.K. Prajapati

LNJPIT, **Chapra**

[Introduction](#page-1-0)

Example of non-isolated singularity: The function $f(z) = cosec \left(\frac{\pi}{z}\right)$) is not analytic at the points where $\sin\left(\frac{\pi}{z}\right)$ $= 0$ i.e., at the points $\frac{\pi}{z} = n\pi$ i.e., the points $z = \frac{1}{n}$ n i.e., the points $z=1,\frac{1}{2}$ $\frac{1}{2},\frac{1}{3}$ $\frac{1}{3}, \frac{1}{4}$ $\frac{1}{4}$, Here $z = 0$ is the limit points of $z=\frac{1}{x}$ $\frac{1}{n}$. Hence $z=0$ is the non-isolated singularity of the function $f(z) = cosec \left(\frac{\pi}{z}\right)$ $\big)$ because in the neighbourhood of z $=$ 0, there are infinite number of other singularities $z=\frac{1}{2}$ $\frac{1}{n}$, when n is very large.

イロン イ御ン イヨン イヨン 一番

 Ω

Dr. G.K. Prajapati

LNJPIT, **Chapra**

[Introduction](#page-1-0)

Definition

Laurent's series: An expansion of the function $f(z)$ in the form

$$
f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n + \sum_{n=1}^{\infty} b_n (z - a)^{-n}
$$

イロト イ母 ト イヨ ト イヨ ト

 $2Q$

is called Laurent's series expansion. The part $\sum_{n=1}^{\infty}b_{n}(z-a)^{-n}$ is called Principal Part of the function $f(z)$ at $z=0$.

Dr. G.K. Prajapati

LNJPIT, **Chapra**

Definition

[Introduction](#page-1-0)

Pole: If the principle part of the function $f(z)$ at $z = a$ in Laurent's expansion has only finite number of terms (say m), we say $f(z)$ has pole of order m at $z = a$. or if \exists a +ve integer m such that

$$
\lim_{z \to a} (z - a)^m f(z) = k(constant) \neq 0.
$$

K ロ ▶ K 御 ▶ K ミ ▶

つのへ

then we say that $f(z)$ has a pole of order m at $z = a$.

[Singularities](#page-0-0) ... Dr. G.K. Prajapati

LNJPIT, **Chapra**

[Introduction](#page-1-0)

For Example:1. The function $f(z) = \frac{1}{(z-1)^2(z+2)^5}$ has a pole at $z = 1$ of order 2 and has a pole at $z = -2$ of order 5. **2.** $\tan z$ and $\sec z$ has simple poles at $z = \pm \frac{\pi}{2}$ $\frac{\pi}{2}, \pm \frac{3\pi}{2}$ $\frac{\pi}{2}$, 3. cot z and cosecz has simple poles at $z = 0, \pm \pi, \pm 2\pi, \dots$.

つのへ

[Singularities](#page-0-0)

Dr. G.K. Prajapati

LNJPIT, **Chapra**

[Introduction](#page-1-0)

Definition **Essential Singularities:** If the principle part of $f(z)$ at $z = a$ in Laurent's series expansion has infinite number of terms, then we say that $z = a$ is an essential singularities of $f(z)$. or If $\lim_{z\to a} f(z)$ does not exist, then we say that $z=a$ is essential singularities $f(z)$.

 \leftarrow \Box \rightarrow

- 4 n → + +

つのへ

Dr. G.K. Prajapati LNJPIT, Chapra [Singularities ...](#page-0-0)

> Dr. G.K. Prajapati

LNJPIT, **Chapra**

[Introduction](#page-1-0)

For Example:1. The function $f(z) = e^{1/z}$ has an essential singularities at $z = 0$ because its expansion about $z = 0$

$$
e^{1/z} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \dots
$$

has infinite number of terms in negative powers of z . **2.** The function $f(z) = \sin \left(\frac{-1}{z} \right)$ $z - a$ has an essential singularities at $z = a$ because its expansion about $z = a$

$$
\sin\left(\frac{1}{z-a}\right) = \frac{1}{z-a} - \frac{1}{3!(z-a)^3} + \frac{1}{5!(z-a)^5} - \dots
$$

つのへ

has infinite number of terms in negative powers of $z - a$.

Dr. G.K. Prajapati

LNJPIT, **Chapra**

[Introduction](#page-1-0)

Definition

Removable Singularities: If the principle part of $f(z)$ at $z = a$ in Laurent's series expansion has no terms, then we say that $z = a$ is a removable singularities of $f(z)$. or $z = a$ is said to be removable singularities if $\lim\limits_{z \to a} f(z)$ exist finitely.

 \leftarrow \Box \rightarrow \rightarrow \Box \rightarrow \rightarrow

 $2Q$

> Dr. G.K. Prajapati

LNJPIT, **Chapra**

[Introduction](#page-1-0)

For Example:1. The function $f(z) = \frac{\sin z}{z}$ has removal singularities at $z = 0$ because its expansion about $z = 0$

$$
\frac{\sin z}{z} = 1 - \frac{1}{3!}z^2 + \frac{1}{5!}z^4...
$$

has no number of terms in negative powers of z . **2.** The function $f(z) = \frac{z - \sin z}{z^2}$ has a removable singularities at $z = 0$ because its expansion about $z = 0$

$$
\frac{z-\sin z}{z^2} = \frac{1}{z^2} \left[z - \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots \right) \right] = \frac{z}{3!} - \frac{z^3}{5!} + \dots
$$

つのへ

has no number of terms in negative powers of z .

Dr. G.K. Prajapati

LNJPIT, **Chapra**

[Introduction](#page-1-0)

Example

Find out the zeros and discuss the nature of the singularities of

$$
f(z) = \frac{z-2}{z^2} \left(\sin \frac{1}{z-1} \right)
$$

.

つのへ

Solution: Poles of $f(z)$ are given by equating to zero the denominator of $f(z)$ i.e. $z = 0$ is a pole of order two. zeros of $f(z)$ are given by equating to zero the numerator of $f(z)$ i.e., $(z-2)\sin\left(\frac{-1}{z}\right)$ $\Big) = 0$ $z - 1$ \implies Either $z-2=0$ or $\sin\left(-\frac{1}{2}\right)$ $\Big) = 0$ $z - 1$ $\implies z = 2$ and $\frac{1}{z-1} = n\pi$ イロト イ母 ト イヨト < ヨ トー

[Singularities](#page-0-0) ... Dr. G.K. Prajapati

> LNJPIT, **Chapra**

[Introduction](#page-1-0)

 $\implies z=2$ and $z=1+\frac{1}{2}$ $\frac{1}{n\pi}, n = \pm 1, \pm 2, \pm 3, ...$ Thus, $z = 2$ is a simple zero. The limit point of the zeros $z=1+\stackrel{1}{\rule{0pt}{0.5pt}}$ are given by $z=1.$ Hence $z=1$ is an isolated $n\pi$ essential singularity.

 \leftarrow \Box \rightarrow

 $2Q$

[Singularities](#page-0-0)

Dr. G.K. Prajapati LNJPIT, Chapra

[Introduction](#page-1-0) **Thanks** !!!

メロメ メ団 メメ きょくきょ

Ē

 $\mathcal{O}\subseteq\mathcal{O}$

Dr. G.K. Prajapati LNJPIT, Chapra [Singularities ...](#page-0-0)