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Definition

A zero of analytic function f(x) is the value of z for which
f(z) = 0.

Definition

SINGULAR POINT: A point at which a function f(z) is not
analytic is known as a singular point or singularity of the
function.

For Example: The function
1

z − a
has a singular point at

z − a = 0 or z = a.
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Definition

Isolated singular point: If z = a is a singularity of f(z) and if
there is no other singularity in the neighborhood of the point
z = a, then z = a is said to be an isolated singularity of the
function f(z); otherwise it is called non-isolated.

For Example: The function
1

(z − a)(z − b)
has a singular

point at z = a, b. Here in the neighborhood of a and b, there
does not exits any other singularities. Hence a and b are
isolated singularities.
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Example of non-isolated singularity: The function

f(z) = cosec
(π
z

)
is not analytic at the points where

sin
(π
z

)
= 0 i.e., at the points

π

z
= nπ i.e., the points z =

1

n

i.e., the points z = 1,
1

2
,
1

3
,
1

4
, .... Here z = 0 is the limit points

of z =
1

n
. Hence z = 0 is the non-isolated singularity of the

function f(z) = cosec
(π
z

)
because in the neighbourhood of z

= 0, there are infinite number of other singularities z =
1

n
,

when n is very large.
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Definition

Laurent’s series: An expansion of the function f(z) in the
form

f(z) =
∑∞

n=0 an(z − a)n +
∑∞

n=1 bn(z − a)−n

is called Laurent’s series expansion. The part∑∞
n=1 bn(z − a)−n is called Principal Part of the function

f(z) at z = 0.
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Definition

Pole: If the principle part of the function f(z) at z = a in
Laurent’s expansion has only finite number of terms (say m),
we say f(z) has pole of order m at z = a. or
if ∃ a +ve integer m such that

lim
z→a

(z − a)mf(z) = k(constant) 6= 0.,

then we say that f(z) has a pole of order m at z = a.
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For Example:1. The function f(z) =
1

(z − 1)2(z + 2)5
has a

pole at z = 1 of order 2 and has a pole at z = −2 of order 5.

2. tan z and sec z has simple poles at z = ±π
2
,±3π

2
, ....

3. cot z and cosecz has simple poles at z = 0,±π,±2π, ....
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Definition

Essential Singularities: If the principle part of f(z) at z = a
in Laurent’s series expansion has infinite number of terms, then
we say that z = a is an essential singularities of f(z). or
If lim

z→a
f(z) does not exist, then we say that z = a is essential

singularities f(z) .
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For Example:1. The function f(z) = e1/z has an essential
singularities at z = 0 because its expansion about z = 0

e1/z = 1 +
1

z
+

1

2!z2
+

1

3!z3
+ ...

has infinite number of terms in negative powers of z.

2. The function f(z) = sin

(
1

z − a

)
has an essential

singularities at z = a because its expansion about z = a

sin

(
1

z − a

)
=

1

z − a
− 1

3!(z − a)3
+

1

5!(z − a)5
− ...

has infinite number of terms in negative powers of z − a.
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Definition

Removable Singularities: If the principle part of f(z) at
z = a in Laurent’s series expansion has no terms, then we say
that z = a is a removable singularities of f(z). or
z = a is said to be removable singularities if lim

z→a
f(z) exist

finitely.
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For Example:1. The function f(z) =
sin z

z
has removal

singularities at z = 0 because its expansion about z = 0

sin z

z
= 1− 1

3!
z2 +

1

5!
z4...

has no number of terms in negative powers of z.

2. The function f(z) =
z − sin z

z2
has a removable singularities

at z = 0 because its expansion about z = 0

z − sin z

z2
=

1

z2

[
z −

(
z − z3

3!
+
z5

5!
+ ...

)]
=
z

3!
− z3

5!
+ ...

has no number of terms in negative powers of z.
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Example

Find out the zeros and discuss the nature of the singularities of

f(z) =
z − 2

z2

(
sin

1

z − 1

)
.

Solution: Poles of f(z) are given by equating to zero the
denominator of f(z) i.e. z = 0 is a pole of order two.
zeros of f(z) are given by equating to zero the numerator of

f(z) i.e., (z − 2) sin

(
1

z − 1

)
= 0

=⇒ Either z − 2 = 0 or sin

(
1

z − 1

)
= 0

=⇒ z = 2 and
1

z − 1
= nπ
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=⇒ z = 2 and z = 1 +
1

nπ
, n = ±1,±2,±3, ...

Thus, z = 2 is a simple zero. The limit point of the zeros

z = 1 +
1

nπ
are given by z = 1. Hence z = 1 is an isolated

essential singularity.
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Thanks !!!
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