

Lok Nayak Jai Prakash Institute of Technology Chapra, Bihar-841302

Dr. G.K. Prajapati LNJPIT, Chapra Complex function ...

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHO OF Z₀

FUNCTIONS OF A COMPLEX VARIABLE

FUNCTIONS OF A COMPLEX VARIABLE: f(z) is a function of a complex variable z and is denoted by w.

w = f(z)w = u + iv

where u and v are the real and imaginary parts of f(z). **NEIGHBORHOOD OF** Z_0 :Let z_0 is a point in the complex plane and let z be any positive number, then the set of points z such that

$$|z - z_0| < \epsilon$$

NEIGHBORHOOD is called ϵ —neighbourhood of z_0 . OF z_0 FUNCTIONS OF A COMPLEX

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX

NEIGHBORHO OF Z_0

FUNCTIONS OF A COMPLEY

FUNCTIONS OF A COMPLEX VARIABLE: f(z) is a function of a complex variable z and is denoted by w.

w = f(z)w = u + iv

where u and v are the real and imaginary parts of f(z). **NEIGHBORHOOD OF** Z_0 :Let z_0 is a point in the complex plane and let z be any positive number, then the set of points z such that

$$|z - z_0| < \epsilon$$

is called ϵ -neighbourhood of z_0

Dr. G.K. Prajapati

Chapra

FUNCTIONS OF A

NEIGHBORHOOD

FUNCTIONS OF A

FUNCTIONS OF A

FUNCTIONS OF A COMPLEX VARIABLE: f(z) is a function of a complex variable z and is denoted by w.

$$w = f(z)$$
$$w = u + iv$$

$$|z - z_0| < \epsilon$$

NEIGHBORHOOD is called ϵ -neighbourhood of z_0 .

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX

FUNCTIONS OF A COMPLEX VARIABLE: f(z) is a function of a complex variable z and is denoted by w.

$$w = f(z)$$
$$w = u + iv$$

where u and v are the real and imaginary parts of f(z). NEIGHBORHOOD OF Z_0 :Let z_0 is a point in the complex plane and let z be any positive number, then the set of points z such that

$$|z - z_0| < \epsilon$$

NEIGHBORHOOD is called ϵ -neighbourhood of z_0 .

FUNCTIONS OF A

Dr. G.K. Prajapati

Chapra

FUNCTIONS OF A

NEIGHBORHOOD

OF A

FUNCTIONS OF A

FUNCTIONS OF A COMPLEX VARIABLE: f(z) is a function of a complex variable z and is denoted by w.

$$w = f(z)$$
$$w = u + iv$$

where u and v are the real and imaginary parts of **NEIGHBORHOOD OF** Z_0 : Let z_0 is a point in the f(z).

$$|z - z_0| < \epsilon$$

NEIGHBORHOOD is called ϵ -neighbourhood of z_0 .

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX VARIABLE

FUNCTIONS OF A COMPLEX VARIABLE: f(z) is a function of a complex variable z and is denoted by w.

$$w = f(z)$$
$$w = u + iv$$

where u and v are the real and imaginary parts of f(z). **NEIGHBORHOOD OF** Z_0 :Let z_0 is a point in the complex plane and let z be any positive number, then the set of points z such that

$$|z - z_0| < \epsilon$$

NEIGHBORHOOD is called ϵ -neighbourhood of z_0 .

FUNCTIONS OF A

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX VARIABLE

FUNCTIONS OF A COMPLEX VARIABLE: f(z) is a function of a complex variable z and is denoted by w.

$$w = f(z)$$
$$w = u + iv$$

where u and v are the real and imaginary parts of f(z). **NEIGHBORHOOD OF** Z_0 :Let z_0 is a point in the complex plane and let z be any positive number, then the set of points z such that

$$|z - z_0| < \epsilon$$

NEIGHBORHCOD is called ϵ -neighbourhood of z_0 .

Dr. G.K. Prajapati

Chapra

FUNCTIONS OF A

NEIGHBORHOOD

OF A

NEIGHBORHOOD

FUNCTIONS OF A

LIMIT: Let f(z) be a single valued function defined at all points in some neighbourhood of point z_0 . Then f(z) is said to have the limit l as z approaches z_0 along any path if given an arbitrary real number $\epsilon > 0$, however small there exists a real number $\delta > 0$. such that

Dr. G.K. Prajapati

Chapra

FUNCTIONS OF A

NEIGHBORHOOD

OF A

NEIGHBORHOOD

FUNCTIONS OF A

LIMIT: Let f(z) be a single valued function defined at all points in some neighbourhood of point z_0 . Then f(z) is said to have the limit l as z approaches z_0 along any path if given an arbitrary real number $\epsilon > 0$, however small there exists a real number $\delta > 0$. such that

 $|f(z) - l| < \epsilon$ whenever $0 < |z - z_0| < \delta$

Dr. G.K. Prajapati

Chapra

FUNCTIONS OF A

OF A

NEIGHBORHOOD

FUNCTIONS OF A

LIMIT: Let f(z) be a single valued function defined at all points in some neighbourhood of point z_0 . Then f(z) is said to have the limit l as z approaches z_0 along any path if given an arbitrary real number $\epsilon > 0$, however small there exists a real number $\delta > 0$. such that

 $|f(z) - l| < \epsilon$ whenever $0 < |z - z_0| < \delta$

i.e. for every $z \neq z_0$ in δ -disc (dotted) of z-plane, f(z) has a value lying in the ϵ -disc of w-plane.

In symbolic form, $\lim_{z \to z_0} f(z) = I$. NEIGHBORHOOD

Dr. G.K. Prajapati

Chapra

FUNCTIONS OF A

OF A

NEIGHBORHOOD

FUNCTIONS OF A

LIMIT: Let f(z) be a single valued function defined at all points in some neighbourhood of point z_0 . Then f(z) is said to have the limit l as z approaches z_0 along any path if given an arbitrary real number $\epsilon > 0$, however small there exists a real number $\delta > 0$. such that

 $|f(z) - l| < \epsilon$ whenever $0 < |z - z_0| < \delta$

i.e. for every $z \neq z_0$ in δ -disc (dotted) of z-plane, f(z) has a value lying in the ϵ -disc of w-plane.

In symbolic form, $\lim_{z \to z_0} f(z) = I$. NEIGHBORHOOD

Dr. G.K. Prajapati

Chapra

FUNCTIONS OF A

OF A

NEIGHBORHOOD

FUNCTIONS OF A

LIMIT: Let f(z) be a single valued function defined at all points in some neighbourhood of point z_0 . Then f(z) is said to have the limit l as z approaches z_0 along any path if given an arbitrary real number $\epsilon > 0$, however small there exists a real number $\delta > 0$. such that

 $|f(z) - l| < \epsilon$ whenever $0 < |z - z_0| < \delta$

i.e. for every $z \neq z_0$ in δ -disc (dotted) of z-plane, f(z) has a value lying in the ϵ -disc of w-plane.

In symbolic form, $\lim_{z \to z_0} f(z) = I$. NEIGHBORHOOD

Dr. G.K. Prajapati

LNJPIT, Chapra

Introductior

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{l} \text{NEIGHBORHOOD} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A Note: (I) δ usually depends upon ϵ . (II) $z \to z_0$ implies that z approaches z_0 along any path. The limits must be independent of the manner in which zpproaches z_0 If we get two different limits as $z \to z_0$ along two different paths then limits does not exist.

- 4 ⊒ >

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTION OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A COMPLEX

 $\begin{array}{l} \text{NEIGHBORHOOD} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

æ

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{c} \text{NEIGHBORHO} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A

Note: (I) δ usually depends upon ϵ .

(II) $z \to z_0$ implies that z approaches z_0 along any path. The limits must be independent of the manner in which zpproaches z_0 If we get two different limits as $z \to z_0$ along two different paths then limits does not exist.

- 4 ⊒ >

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTION OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A COMPLEX

 $\begin{array}{l} \text{NEIGHBORHOOD} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

æ

Dr. G.K. Prajapati

LNJPIT, Chapra

Introductior

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{c} \text{NEIGHBORHO} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A Note: (I) δ usually depends upon ϵ . (II) $z \rightarrow z_0$ implies that z approaches z_0 along any path.

The limits must be independent of the manner in which zpproaches z_0 If we get two different limits as $z \rightarrow z_0$ along two different paths then limits does not exist.

- 4 ⊒ >

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTION OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A COMPLEX

 $\begin{array}{l} \text{NEIGHBORHOOD} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ -

æ

Dr. G.K. Prajapati

LNJPIT, Chapra

Introductior

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{l} \text{NEIGHBORHOOD} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A Note: (1) δ usually depends upon ϵ . (11) $z \to z_0$ implies that z approaches z_0 along any path. The limits must be independent of the manner in which zapproaches z_0 If we get two different limits as $z \to z_0$ along two different paths then limits does not exist.

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTION OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A COMPLEX

 $\begin{array}{l} \text{NEIGHBORHOOD} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ -

æ

Dr. G.K. Prajapati

LNJPIT, Chapra

OF A

OF A

Example

uction	Prove that $\lim_{z \to -1} \frac{z^2 + 4z + 3}{z} = 4 - i$
TIONS	$z \rightarrow 1-i$ $z+1$
PLEX	Solution: $(z+1)(z+3) = \lim_{z \to -3} (z+3) = (1-i) + 3 = 4 - i$
BORHO	$\lim_{z \to 1-i} \frac{1}{z+1} = \lim_{z \to 1-i} (z+3) = (1-i) + 3 = 4 - i$
)	
TIONS	
PLEX	
BORHO	DC
)	
TIONS	
DIFY	▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● 今年

Dr. G.K. Prajapati

LNJPIT, Chapra

OF A

Example

n IS		Prove that $\lim_{z \to 1-i} \frac{z^2 + 4z + 3}{z+1} = 4 - i$
RHO	OD	Solution: $\lim_{z \to 1-i} \frac{(z+1)(z+3)}{z+1} = \lim_{z \to 1-i} (z+3) = (1-i) + 3 = 4-i$

◆□ > ◆□ > ◆臣 > ◆臣 >

æ

OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A

Dr. G.K. Prajapati

OF A

OF A

OF A

Example Show that $\lim_{z\to 0} \frac{z}{|z|}$ does not exist. Chapra FUNCTIONS **NEIGHBORHOOD** FUNCTIONS NEIGHBORHOOD FUNCTIONS - 4 ⊒ >

Dr. G.K. Prajapati

LNJPIT, Chapra

Introductior

FUNCTIONS OF A COMPLEX VARIABLE

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A

Example Show that $\lim_{z\to 0} \frac{z}{|z|}$ does not exist. Solution: $\lim_{z \to 0} \frac{z}{|z|} = \lim_{(x,y) \to (0,0)} \frac{x + iy}{\sqrt{x^2 + y^2}}$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Dr. G.K. Prajapati

LNJPIT, Chapra

ntroduction

FUNCTION OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHO OF Z₀

FUNCTIONS OF A

Example

Show that
$$\lim_{z\to 0} \frac{z}{|z|}$$
 does not exist.
Solution: $\lim_{z\to 0} \frac{z}{|z|} = \lim_{(x,y)\to(0,0)} \frac{x+iy}{\sqrt{x^2+y^2}}$
Let $y = mx$,
 $= \lim_{x\to 0} \frac{x+imx}{\sqrt{x^2+(mx)^2}} = \lim_{x\to 0} \frac{1+im}{\sqrt{1+(m)^2}} = \frac{1+im}{\sqrt{1+m^2}}$
The value of $\frac{1+im}{\sqrt{1+m^2}}$ are different for different value of m .
Hence the limit does not exist.

▲ロト ▲圖ト ▲温ト ▲温ト

æ

Dr. G.K. Prajapati

LNJPIT, Chapra

Introductior

FUNCTION OF A COMPLEX VARIABLE

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A

Example

Show that
$$\lim_{z\to 0} \frac{z}{|z|}$$
 does not exist.
Solution: $\lim_{z\to 0} \frac{z}{|z|} = \lim_{(x,y)\to(0,0)} \frac{x+iy}{\sqrt{x^2+y^2}}$
Let $y = mx$,
 $= \lim_{x\to 0} \frac{x+imx}{\sqrt{x^2+(mx)^2}} = \lim_{x\to 0} \frac{1+im}{\sqrt{1+(m)^2}} = \frac{1+im}{\sqrt{1+m^2}}$
The value of $\frac{1+im}{\sqrt{1+m^2}}$ are different for different value of m .
Hence the limit does not exist.

・ロト ・回ト ・ヨト ・ヨト

æ

Dr. G.K. Prajapati LNJPIT, Chapra Complex function ...

Dr. G.K. Prajapati

Chapra

Example Show that $\lim_{z \to z} \frac{z}{z}$ does not exist. $z \rightarrow 0 \bar{z}$ Solution: Case-1. FUNCTIONS OF A **NEIGHBORHOOD** FUNCTIONS OF A NEIGHBORHOOD FUNCTIONS OF A - 4 回 2 4 日 2 4 日 2

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX

FUNCTIONS OF A

Example Show that $\lim_{z\to 0} \frac{z}{\overline{z}}$ does not exist. Solution: Case-1.

 $\lim_{z \to 0} \frac{z}{\overline{z}} = \lim_{(x,y) \to (0,0)} \frac{x + iy}{x - iy} = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x + iy}{x - iy} \right] = \lim_{x \to 0} \frac{x}{\overline{x}} = 1$ Again **Case-2.** $\lim_{z \to 0} \frac{z}{\overline{z}} = \lim_{(x,y) \to (0,0)} \frac{x + iy}{x - iy} =$ $\lim_{y \to 0} \left[\lim_{x \to 0} \frac{x + iy}{x - iy} \right] = \lim_{y \to 0} \frac{iy}{-iy} = -1$ As $z \to 0$ along two different paths, we get different limits.

Hence the limit does not exist.

Dr. G.K. Prajapati

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A

COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A

Example Show that $\lim_{z \to z} \frac{z}{z}$ does not exist. $z \rightarrow 0 \bar{z}$ Solution: Case-1. $\lim_{z \to 0} \frac{z}{\bar{z}} = \lim_{(x,y) \to (0,0)} \frac{x+iy}{x-iy} = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x+iy}{x-iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$

Dr. G.K. Prajapati

LNJPIT, Chapra

ntroduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS

OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A

Example

Show that $\lim_{z \to z} \frac{z}{z}$ does not exist. $z \rightarrow 0 \bar{z}$ Solution: Case-1. $\lim_{z \to 0} \frac{z}{\overline{z}} = \lim_{(x,y) \to (0,0)} \frac{x+iy}{x-iy} = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x+iy}{x-iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX

NEIGHBORHOOD

FUNCTIONS OF A

Example

Show that $\lim_{z \to 0}^{z} does not exist.$ $z \rightarrow 0 \bar{z}$ Solution: Case-1. $\lim_{z \to 0} \frac{z}{\bar{z}} = \lim_{(x,y) \to (0,0)} \frac{x+iy}{x-iy} = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x+iy}{x-iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX

NEIGHBORHOOD

FUNCTIONS OF A

Example

Show that $\lim_{z \to 0} \frac{z}{z}$ does not exist. $z \rightarrow 0 \bar{z}$ Solution: Case-1. $\lim_{z \to 0} \frac{z}{\bar{z}} = \lim_{(x,y) \to (0,0)} \frac{x+iy}{x-iy} = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x+iy}{x-iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z₀

FUNCTIONS OF A

Example Show that $\lim_{z \to z} \frac{z}{z}$ does not exist. $z \rightarrow 0 \bar{z}$ Solution: Case-1. $\lim_{z \to 0} \frac{z}{\overline{z}} = \lim_{(x,y) \to (0,0)} \frac{x+iy}{x-iy} = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x+iy}{x-iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$ Again **Case-2.** $\lim_{z \to 0} \frac{z}{\overline{z}} = \lim_{(x,y) \to (0,0)} \frac{x+iy}{x-iy}$

Dr. G.K. Prajapati Example

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z₀

FUNCTIONS OF A

Show that $\lim_{z \to 0} \frac{z}{z}$ does not exist. $z \rightarrow 0 \bar{z}$ Solution: Case-1. $\lim_{z \to 0} \frac{z}{\bar{z}} = \lim_{(x,y) \to (0,0)} \frac{x+iy}{x-iy} = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x+iy}{x-iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$ Again **Case-2.** $\lim_{z \to 0} \frac{z}{\overline{z}} = \lim_{(x,y) \to (0,0)} \frac{x + iy}{x - iy}$

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A

Example Show that $\lim_{z \to 0}^{z} does not exist.$ $z \rightarrow 0 \bar{z}$ Solution: Case-1. $\lim_{z \to 0} \frac{z}{\bar{z}} = \lim_{(x,y) \to (0,0)} \frac{x+iy}{x-iy} = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x+iy}{x-iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$ Again **Case-2.** $\lim_{z \to 0} \frac{z}{\overline{z}} = \lim_{(x,y) \to (0,0)} \frac{x + iy}{x - iy} =$ $\lim_{y \to 0} \left[\lim_{x \to 0} \frac{x + iy}{x - iy} \right] = \lim_{y \to 0} \frac{iy}{-iy} = -1$ As $z \to 0$ along two different paths, we get different limits.

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX VARIABLE

FUNCTIONS OF A

Example Show that $\lim_{z\to 0} \frac{z}{\overline{z}}$ does not exist. Solution: Case-1. $\lim_{z\to 0} \frac{z}{\overline{z}} = \lim_{(x,y)\to(0,0)} \frac{x+iy}{x-iy} = \lim_{x\to 0} \left[\lim_{y\to 0} \frac{x+iy}{x-iy}\right] = \lim_{x\to 0} \frac{x}{x} = 1$ Again Case-2. $\lim_{z\to 0} \frac{z}{\overline{z}} = \lim_{(x,y)\to(0,0)} \frac{x+iy}{x-iy} =$ $\lim_{y\to 0} \left[\lim_{x\to 0} \frac{x+iy}{x-iy}\right] = \lim_{y\to 0} \frac{iy}{-iy} = -1$

As $z \to 0$ along two different paths, we get different limits. Hence the limit does not exist.

<ロト <回ト < 回ト < 回ト

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX

NEIGHBORHOOD

FUNCTIONS OF A

Example

Show that $\lim_{z \to 0}^{z} does not exist.$ $z \rightarrow 0 \bar{z}$ Solution: Case-1. $\lim_{z \to 0} \frac{z}{\bar{z}} = \lim_{(x,y) \to (0,0)} \frac{x+iy}{x-iy} = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x+iy}{x-iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$ Again Case-2. $\lim_{z \to 0} \frac{z}{\overline{z}} = \lim_{(x,y) \to (0,0)} \frac{x+iy}{x-iy} =$ $\lim_{y \to 0} \left[\lim_{x \to 0} \frac{x + iy}{x - iy} \right] = \lim_{y \to 0} \frac{iy}{-iy} = -1$ As $z \rightarrow 0$ along two different paths, we get different limits.

イロト イヨト イヨト イヨト

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A

Example

Show that $\lim_{z \to 0}^{z} does not exist.$ $z \rightarrow 0 \bar{2}$ Solution: Case-1. $\lim_{z \to 0} \frac{z}{\bar{z}} = \lim_{(x,y) \to (0,0)} \frac{x + iy}{x - iy} = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x + iy}{x - iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$ Again Case-2. $\lim_{z \to 0} \frac{z}{\overline{z}} = \lim_{(x,y) \to (0,0)} \frac{x+iy}{x-iy} =$ $\lim_{y \to 0} \left[\lim_{x \to 0} \frac{x + iy}{x - iy} \right] = \lim_{y \to 0} \frac{iy}{-iy} = -1$ As $z \to 0$ along two different paths, we get different limits. Hence the limit does not exist.

▲圖▶ ▲屋▶ ▲屋▶

Complex function ... Dr. G.K. Prajapati Exercise Chapra Show that the limit does not exist 1. $\lim_{z \to 0} \frac{Im(z)^3}{Re(z)^3}$ 2. $\lim_{z \to 0} \frac{z}{(\bar{z})^2}$ 3. $\lim_{z \to 0} \frac{Re(z)^2}{Im(z)}$ FUNCTIONS OF A Find the limit of the following $\lim_{z \to \infty} \frac{Re(z)^2}{z}$ **Ans.** 0 6. $\lim_{z \to 1+i} \frac{2z^3}{(Im(z)^2)}$ **Ans.** 2(-1+i)**NEIGHBORHOOD** 5. $z \rightarrow 0$ 7. $\lim_{z \to 0} \frac{z^2 + 6z + 3}{z^2 + 2z + 2}$ **Ans.** 3/2. OF A NEIGHBORHOOD OF A

Dr. G.K. Prajapati

Chapra

FUNCTIONS OF A

FUNCTIONS OF A

NFIGHBORHOOD

OF A

Continuity: The function f(z) of a complex variable z is said to be continuous at the point z_0 if for any given positive number ϵ , we can find a number δ such that $|f(z) - f(z_0)| < \epsilon$ for all points z of the domain satisfying

$$|z - z_0| < \delta$$

A (1) < (1) < (1) </p>

NEIGHBORHOOD f(z) is said to be continuous at $z = z_0$ if $\lim_{z \to 0} f(z) = f(z_0)$

Dr. G.K. Prajapati

LNJPIT, Chapra

Example

at z = i

Examine the continuity of the function

$$f(z) = \begin{cases} \frac{z^3 - iz^2 + z - i}{z - i}, & z \neq i \\ 0, & z = i \end{cases}$$

イロト イヨト イヨト イヨト

Э

NEIGHBORHOOD

OF Z_0

OF A

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A

Solution:

Dr. G.K. Prajapati

LNJ Cha

OF A

OF A

	Dr. G.K. Prajapati	LNJPIT, Chapra	Complex function			
			< • • < 6	⊒→ ∢≣→ ∢≣→		
вокно	Hence $f(z)$ is	continuous at				
LEX BLE			$\sum_{i} f(z) = f(i)$			
TIONS						
BORHO	^{D} Also, we have $f(i) = 0$. Thus					
LEX BLE		$=\lim_{z\to z\to z}$	$\prod_{i}(z^{2}+1) \equiv 0$			
FIONS		1.	(2, 1) 0			
PIT, apra	$z \rightarrow i$, $z \rightarrow z$	$\rightarrow i$ $z - i$ $\lim \frac{z}{z}$	$\frac{z \to i}{(z-i)}$			
	$\lim f(z) = \lim$	m $\frac{z^2 - iz^2 + z}{.}$	$\frac{z-i}{} = \lim \frac{z-i}{}$	(-i) + 1(z - i)		

Dr. G.K. Prajapati

OF A

OF A

Solution:

$$\lim_{z \to i} f(z) = \lim_{z \to i} \frac{z^3 - iz^2 + z - i}{z - i} = \lim_{z \to i} \frac{z^2(z - i) + 1(z - i)}{z - i} = \lim_{z \to i} \frac{(z^2 + 1)(z - i)}{z - i}$$

$$= \lim_{z \to i} (z^2 + 1) = 0$$
Also, we have $f(i) = 0$. Thus
$$= \lim_{z \to i} f(z) = f(i)$$
RHCOD Hence $f(z)$ is continuous at $z = i$.

Dr. G.K. Prajapati

OF A

OF A

Solution:

$$\lim_{z \to i} f(z) = \lim_{z \to i} \frac{z^3 - iz^2 + z - i}{z - i} = \lim_{z \to i} \frac{z^2(z - i) + 1(z - i)}{z - i} = \lim_{z \to i} \frac{(z^2 + 1)(z - i)}{z - i}$$

$$= \lim_{z \to i} (z^2 + 1) = 0$$
Also, we have $f(i) = 0$. Thus
$$= \lim_{z \to i} f(z) = f(i)$$
Hence $f(z)$ is continuous at $z = i$.

Dr. G.K. Prajapati

OF A

OF A

OF A

Solution:

$$\lim_{z \to i} f(z) = \lim_{z \to i} \frac{z^3 - iz^2 + z - i}{z - i} = \lim_{z \to i} \frac{z^2(z - i) + 1(z - i)}{z - i} = \lim_{z \to i} \frac{(z^2 + 1)(z - i)}{z - i}$$
$$= \lim_{z \to i} (z^2 + 1) = 0$$
Also, we have $f(i) = 0$. Thus
$$= \lim_{z \to i} f(z) = f(i)$$
Hence $f(z)$ is continuous at $z = i$.

・ロト ・回ト ・ヨト ・ヨト

æ

Dr. G.K. Prajapati

OF A

OF A

OF A

Solution:

$$\lim_{z \to i} f(z) = \lim_{z \to i} \frac{z^3 - iz^2 + z - i}{z - i} = \lim_{z \to i} \frac{z^2(z - i) + 1(z - i)}{z - i} = \lim_{z \to i} \frac{(z^2 + 1)(z - i)}{z - i}$$
$$= \lim_{z \to i} (z^2 + 1) = 0$$
Hood Also, we have $f(i) = 0$. Thus
$$= \lim_{z \to i} f(z) = f(i)$$
Hood Hence $f(z)$ is continuous at $z = i$.

Dr. G.K. Prajapati

LNJ Cha Solution:

apati	$z^{3} - iz^{2} + z - i$ $z^{2}(z - i) + 1(z - i)$
PIT,	$\lim_{z \to i} f(z) = \lim_{z \to i} \frac{z - i}{z - i} = \lim_{z \to i} \frac{z - i}{z - i} = z - i$
apra	$\lim \frac{(z^2+1)(z-i)}{z}$
uction	$z \rightarrow i$ $z - i$
TIONS	
LEX BLE	$=\lim_{z\to i}(z^2+1)=0$
IBORHO	^{OD} Also, we have $f(i)=0$. Thus
TIONS	1 θ $($ $) \theta (t)$
LEX BLE	$=\lim_{z\to i}f(z)=f(i)$
IBORHO	OD Hence $f(z)$ is continuous at $z = i$.
TIONS	
IFY	《····································
	Dr. G.K. Prajapati IN IPLL Chapra Complex function

LN Cł

Solution:

japati	$z^{3} - iz^{2} + z - i$ $z^{2}(z - i) + 1(z - i)$	
JPIT, Japra	$\lim_{z \to i} f(z) = \lim_{z \to i} \frac{z - iz}{z - i} = \lim_{z \to i} \frac{z - iz}{z - i} = \lim_{z \to i} \frac{z - iz}{z - i} = \lim_{z \to i} \frac{z - iz}{z - i} = \lim_{z \to i} \frac{z - iz}{z - i}$	=
	$z \rightarrow i$ $z - i$	
TIONS		
PLEX ABLE	$=\lim_{z \to i} (z^2 + 1) = 0$	
HBORHO	^{OD} Also, we have $f(i) = 0$. Thus	
TIONS	1 , $\ell(\cdot)$, $\ell(\cdot)$	
PLEX ABLE	$=\lim_{z\to i}f(z)=f(i)$	
HBORHO	^{OD} Hence $f(z)$ is continuous at $z = i$.	
	谢 《谢》《昭》《四》》	¢.
	Dr. G.K. Prajapati LNJPIT, Chapra Complex function	

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTION OF A COMPLEX VARIABLE

Example

Show that the function f(z) defined by

$$f(z) = \begin{cases} \frac{Re(z)}{z}, & z \neq 0\\ 0, & z = 0 \end{cases}$$

is not continuous at z = 0.

FUNCTION OF A

VARIABLE

 $\begin{array}{c} \text{NEIGHBORHO} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{Re(z)}{z} = \lim_{(x,y) \to (0,0)} \frac{x}{x+iy} = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x}{x+iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$$

イロト イヨト イヨト イヨト

Э

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

Example

Show that the function f(z) defined by

$$f(z) = \begin{cases} \frac{Re(z)}{z}, & z \neq 0\\ 0, & z = 0 \end{cases}$$

is not continuous at z = 0.

NEIGHBORHCOD Solution:Here

OF Z₀

OF A COMPLEX VARIABLE

 $\begin{array}{l} \text{NEIGHBORHO} \\ \text{OD} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{Re(z)}{z} = \lim_{(x,y) \to (0,0)} \frac{x}{x+iy} =$$
$$\lim_{x \to 0} \left[\lim_{y \to 0} \frac{x}{x+iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$$

イロト イヨト イヨト イヨト

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

Example

Show that the function f(z) defined by

$$f(z) = \begin{cases} \frac{Re(z)}{z}, & z \neq 0\\ 0, & z = 0 \end{cases}$$

is not continuous at z = 0.

NEIGHBORHCOD Solution:Here

OF Z₀

OF A COMPLEX VARIABLE

 $\begin{array}{l} \text{NEIGHBORHO} \\ \text{OD} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{Re(z)}{z} = \lim_{(x,y) \to (0,0)} \frac{x}{x+iy} =$$
$$\lim_{x \to 0} \left[\lim_{y \to 0} \frac{x}{x+iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$$

イロト イヨト イヨト イヨト

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

Example

Show that the function f(z) defined by

$$f(z) = \begin{cases} \frac{Re(z)}{z}, & z \neq 0\\ 0, & z = 0 \end{cases}$$

is not continuous at z = 0.

NEIGHBORHCOD Solution:Here

OF A COMPLEX VARIABLE

 $\begin{array}{c} \text{NEIGHBORHO} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{Re(z)}{z} = \lim_{(x,y) \to (0,0)} \frac{x}{x + iy} =$$
$$\lim_{x \to 0} \left[\lim_{y \to 0} \frac{x}{x + iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$$

イロト イヨト イヨト イヨト

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

Example

Show that the function f(z) defined by

$$f(z) = \begin{cases} \frac{Re(z)}{z}, & z \neq 0\\ 0, & z = 0 \end{cases}$$

is not continuous at z = 0.

NEIGHBORHCOD Solution:Here

OF Z_0

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{l} \text{NEIGHBORHO} \\ \text{OD} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{Re(z)}{z} = \lim_{(x,y) \to (0,0)} \frac{x}{x+iy} = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x}{x+iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$$

イロト イヨト イヨト イヨト

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

Example

Show that the function f(z) defined by

$$f(z) = \begin{cases} \frac{Re(z)}{z}, & z \neq 0\\ 0, & z = 0 \end{cases}$$

is not continuous at z = 0.

NEIGHBORHOOD Solution:Here

OF Z_0

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{c} \text{NEIGHBORHO} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{Re(z)}{z} = \lim_{(x,y) \to (0,0)} \frac{x}{x+iy} = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x}{x+iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$$

イロト イヨト イヨト イヨト

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

Example

Show that the function f(z) defined by

$$f(z) = \begin{cases} \frac{Re(z)}{z}, & z \neq 0\\ 0, & z = 0 \end{cases}$$

is not continuous at z = 0.

NEIGHBORHCOD Solution:Here

OF Z_0

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{l} \text{NEIGHBORHO} \\ \text{OD} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{Re(z)}{z} = \lim_{(x,y) \to (0,0)} \frac{x}{x+iy} = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x}{x+iy} \right] = \lim_{x \to 0} \frac{x}{x} = 1$$

イロト イヨト イヨト イヨト

Complex function ... Dr. G.K. Prajapati Also $\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{Re(z)}{z} = \lim_{(x,y) \to (0,0)} \frac{x}{x + iy} = \lim_{y \to 0} \left[\lim_{x \to 0} \frac{x}{x + iy} \right] = \lim_{y \to 0} \frac{0}{0 + iy} = 0$ Chapra FUNCTIONS OF A NEIGHBORHOOD FUNCTIONS OF A **NEIGHBORHOOD** OF A - 4 同下 4 日下 4 日下

Complex function ... Dr. G.K. Prajapati Also $\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{Re(z)}{z} = \lim_{(x,y) \to (0,0)} \frac{x}{x + iy} = \lim_{y \to 0} \left[\lim_{x \to 0} \frac{x}{x + iy} \right] = \lim_{y \to 0} \frac{0}{0 + iy} = 0$ Chapra FUNCTIONS OF A NEIGHBORHOOD FUNCTIONS OF A **NEIGHBORHOOD** OF A - 4 同下 4 日下 4 日下

Complex function ... Dr. G.K. Prajapati Also $\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{Re(z)}{z} = \lim_{(x,y) \to (0,0)} \frac{x}{x + iy} = \lim_{y \to 0} \left[\lim_{x \to 0} \frac{x}{x + iy} \right] = \lim_{y \to 0} \frac{0}{0 + iy} = 0$ Chapra FUNCTIONS OF A NEIGHBORHOOD FUNCTIONS OF A NEIGHBORHOOD OF A - 4 同下 4 日下 4 日下

Complex function ... Dr. G.K. Prajapati Also $$\begin{split} \lim_{z \to 0} f(z) &= \lim_{z \to 0} \frac{Re(z)}{z} = \lim_{(x,y) \to (0,0)} \frac{x}{x + iy} = \\ \lim_{y \to 0} \left[\lim_{x \to 0} \frac{x}{x + iy} \right] &= \lim_{y \to 0} \frac{0}{0 + iy} = 0 \end{split}$$ Chapra FUNCTIONS OF A AS lim for two different paths, limit have two different values. **NEIGHBORHOOD** $z \rightarrow 0$ FUNCTIONS OF A NEIGHBORHOOD OF A - 4 回 ト 4 ヨ ト 4 ヨ ト Dr. G.K. Prajapati LNJPIT. Chapra Complex function ...

Complex function ... Dr. G.K. Prajapati Also $$\begin{split} \lim_{z \to 0} f(z) &= \lim_{z \to 0} \frac{Re(z)}{z} = \lim_{(x,y) \to (0,0)} \frac{x}{x + iy} = \\ \lim_{y \to 0} \left[\lim_{x \to 0} \frac{x}{x + iy} \right] &= \lim_{y \to 0} \frac{0}{0 + iy} = 0 \end{split}$$ Chapra FUNCTIONS OF A AS lim for two different paths, limit have two different values. **NEIGHBORHOOD** $z \rightarrow 0$ So the limit does not exist. Thus f(z) is not continuous at FUNCTIONS z = 0.OF A **NEIGHBORHOOD** OF A ▲圖▶ ▲屋▶ ▲屋▶ Dr. G.K. Prajapati LNJPIT. Chapra Complex function ...

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A

Exercise

Examine the continuity of the following functions

(1.) $f(z) = \begin{cases} \frac{Im(z)}{|z|}, z \neq 0 \\ 0, & z = 0 \end{cases}$ Ans. Not Continuous (2.) $f(z) = \frac{z^2 + 3z + 4}{z^2 + i}$ at z = 1 - i Ans. Continuous

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Zo

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{l} \text{NEIGHBORHOOD} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A

DIFFERENTIABILITY:

Let f(z) be a single valued function of the variable z, then $f'(z)=\lim_{\delta z\to 0}\frac{f(z+\delta z)-f(z)}{\delta z}$

provided that the limit exists and is independent of the path along which $\delta z \rightarrow 0$. Let P be a fixed point and Q be a neighbouring point. The point Q may approach P along any straight line or curved path.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

Ð,

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{l} \text{NEIGHBORHOOD} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A

DIFFERENTIABILITY:

Let $f(\boldsymbol{z})$ be a single valued function of the variable $\boldsymbol{z},$ then

$$f'(z) = \lim_{\delta z \to 0} \frac{f(z + \delta z) - f(z)}{\delta z}$$

provided that the limit exists and is independent of the path along which $\delta z \rightarrow 0$. Let P be a fixed point and Q be a neighbouring point. The point Q may approach P along any straight line or curved path.

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

Ð,

Dr. G.K. Prajapati

LNJPIT Chapra

Example

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A COMPLEX

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A $\text{If } f(z) = \begin{cases} \frac{x^3y(y-ix)}{x^6+y^2}, z \neq 0 \\ 0, \qquad z=0 \end{cases} \text{ Then discuss } \frac{df}{dz} \text{ at } z=0. \end{cases}$

イロト イヨト イヨト イヨト

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{l} \text{NEIGHBORHO} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A **Solution:** If $z \to 0$ along radius vector y = mx.

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \left[\frac{\frac{x^3 y(y - ix)}{x^6 + y^2} - 0}{x + iy} \right] = \lim_{z \to 0} \left[\frac{-ix^3 y(x + iy)}{(x^6 + y^2)(x + iy)} \right]$$

$$= \lim_{z \to 0} \left[\frac{-ix^3y}{(x^6 + y^2)} \right] = \lim_{x \to 0} \left[\frac{-ix^3(mx)}{(x^6 + m^2x^2)} \right] = \lim_{x \to 0} \left[\frac{-imx^2}{(x^4 + m^2)} \right] = 0$$

Complex function ...

イロト イヨト イヨト イヨト

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{l} \text{NEIGHBORHO} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A **Solution:** If $z \to 0$ along radius vector y = mx.

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \left[\frac{\frac{x^3 y(y - ix)}{x^6 + y^2} - 0}{x + iy} \right] = \lim_{z \to 0} \left[\frac{-ix^3 y(x + iy)}{(x^6 + y^2)(x + iy)} \right]$$

$$= \lim_{z \to 0} \left[\frac{-ix^3y}{(x^6 + y^2)} \right] = \lim_{x \to 0} \left[\frac{-ix^3(mx)}{(x^6 + m^2x^2)} \right] = \lim_{x \to 0} \left[\frac{-imx^2}{(x^4 + m^2)} \right] = 0$$

Dr. G.K. Prajapati LNJPIT, Chapra

Complex function ...

イロト イヨト イヨト イヨト

Э

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Zo

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{l} \text{NEIGHBORHO} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A **Solution:** If $z \to 0$ along radius vector y = mx.

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \left[\frac{\frac{x^3 y(y - ix)}{x^6 + y^2} - 0}{\frac{x^6 + y^2}{x + iy}} \right] = \lim_{z \to 0} \left[\frac{-ix^3 y(x + iy)}{(x^6 + y^2)(x + iy)} \right]$$
$$= \lim_{z \to 0} \left[\frac{-ix^3 y}{(x^6 + y^2)(x + iy)} \right] = \lim_{z \to 0} \left[\frac{-ix^3 (mx)}{(x^6 + y^2)(x + iy)} \right] = \lim_{z \to 0} \left[\frac{-ix^3 (mx)}{(x^6 + y^2)(x + iy)} \right]$$

$$\lim_{z \to 0} \left[(x^6 + y^2) \right]^{-\lim_{x \to 0}} \left[(x^6 + m^2 x^2) \right]^{-1} \\
\lim_{x \to 0} \left[\frac{-imx^2}{(x^4 + m^2)} \right]^{-1} = 0$$

イロト イヨト イヨト イヨト

E

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Zo

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{c} \text{NEIGHBORHO} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A **Solution:** If $z \to 0$ along radius vector y = mx.

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \left[\frac{\frac{x^3 y(y - ix)}{x^6 + y^2} - 0}{\frac{x^6 + y^2}{x + iy}} \right] = \lim_{z \to 0} \left[\frac{-ix^3 y(x + iy)}{(x^6 + y^2)(x + iy)} \right]$$
$$= \lim_{z \to 0} \left[\frac{-ix^3 y}{(x^6 + y^2)} \right] = \lim_{x \to 0} \left[\frac{-ix^3 (mx)}{(x^6 + m^2 x^2)} \right] = \lim_{x \to 0} \left[\frac{-imx^2}{(x^4 + m^2)} \right] = 0$$

イロト イヨト イヨト イヨト

E

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{c} \text{NEIGHBORHO} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A **Solution:** If $z \to 0$ along radius vector y = mx.

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \left[\frac{\frac{x^3 y(y - ix)}{x^6 + y^2} - 0}{\frac{x^6 + y^2}{x + iy}} \right] = \lim_{z \to 0} \left[\frac{-ix^3 y(x + iy)}{(x^6 + y^2)(x + iy)} \right]$$
$$= \lim_{z \to 0} \left[\frac{-ix^3 y}{(x^6 + y^2)} \right] = \lim_{x \to 0} \left[\frac{-ix^3 (mx)}{(x^6 + m^2 x^2)} \right] = \lim_{x \to 0} \left[\frac{-imx^2}{(x^4 + m^2)} \right] = 0$$

・ロン ・回と ・ヨン・

E

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Zo

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{l} \textbf{NEIGHBORHO} \\ \textbf{OF} \ Z_0 \end{array}$

FUNCTIONS OF A **Solution:** If $z \to 0$ along radius vector y = mx.

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \left[\frac{\frac{x^3 y(y - ix)}{x^6 + y^2} - 0}{\frac{x^6 + y^2}{x + iy}} \right] = \lim_{z \to 0} \left[\frac{-ix^3 y(x + iy)}{(x^6 + y^2)(x + iy)} \right]$$
$$= \lim_{z \to 0} \left[\frac{-ix^3 y}{(x^6 + y^2)} \right] = \lim_{x \to 0} \left[\frac{-ix^3 (mx)}{(x^6 + m^2 x^2)} \right] = \lim_{x \to 0} \left[\frac{-imx^2}{(x^4 + m^2)} \right] = 0$$

Dr. G.K. Prajapati LNJPIT, Chapra Co

Complex function ...

イロト イヨト イヨト イヨト

E

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Zo

FUNCTIONS OF A COMPLEX VARIABLE

 $\begin{array}{l} \textbf{NEIGHBORHO} \\ \textbf{OF} \ Z_0 \end{array}$

FUNCTIONS OF A **Solution:** If $z \to 0$ along radius vector y = mx.

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \left[\frac{\frac{x^3 y(y - ix)}{x^6 + y^2} - 0}{x + iy} \right] = \lim_{z \to 0} \left[\frac{-ix^3 y(x + iy)}{(x^6 + y^2)(x + iy)} \right]$$
$$= \lim_{z \to 0} \left[\frac{-ix^3 y}{(x^6 + y^2)} \right] = \lim_{x \to 0} \left[\frac{-ix^3 (mx)}{(x^6 + m^2 x^2)} \right] =$$

$$= \lim_{z \to 0} \left[\frac{1}{(x^6 + y^2)} \right] = \lim_{x \to 0} \left[\frac{1}{(x^6 + m^2 x^2)} \right] = 0$$
$$\lim_{x \to 0} \left[\frac{-imx^2}{(x^4 + m^2)} \right] = 0$$

イロト イヨト イヨト イヨト

E

Dr. G.K.

Chapra

FUNCTIONS OF A

NEIGHBORHOOD

FUNCTIONS OF A

NEIGHBORHOOD

OF A

But along $y = x^3$

$$= \lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \left[\frac{-ix^3(y)}{(x^6 + y^2)} \right] = \lim_{x \to 0} \left[\frac{-ix^3(x^3)}{(x^6 + (x^3)^2)} \right] = -\frac{i}{2}$$

A (1) > A (2)

Complex function ... Dr. G.K. Prajapati But along $y = x^3$ $=\lim_{z\to 0}\frac{f(z)-f(0)}{z}=\lim_{z\to 0}\left\lceil\frac{-ix^3(y)}{(x^6+u^2)}\right\rceil=$ Chapra FUNCTIONS OF A **NEIGHBORHOOD** FUNCTIONS OF A NFIGHBORHOOD OF A

Complex function ... Dr. G.K. Prajapati But along $y = x^3$ $= \lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \left[\frac{-ix^3(y)}{(x^6 + u^2)} \right] =$ Chapra $\lim_{x \to 0} \left[\frac{-ix^3(x^3)}{(x^6 + (x^3)^2)} \right] = -\frac{i}{2}$ FUNCTIONS OF A **NEIGHBORHOOD** FUNCTIONS OF A NFIGHBORHOOD OF A

Complex function ... Dr. G.K. Prajapati But along $y = x^3$ $= \lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \left[\frac{-ix^3(y)}{(x^6 + y^2)} \right] =$ Chapra $\lim_{x \to 0} \left[\frac{-ix^3(x^3)}{(x^6 + (x^3)^2)} \right] = -\frac{i}{2}$ FUNCTIONS OF A **NEIGHBORHOOD** FUNCTIONS OF A **NEIGHBORHOOD** OF A LNJPIT, Chapra Dr. G.K. Prajapati Complex function ...

Complex function ... Dr. G.K. Prajapati But along $y = x^3$ $= \lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \left[\frac{-ix^3(y)}{(x^6 + y^2)} \right] =$ Chapra $\lim_{x \to 0} \left[\frac{-ix^3(x^3)}{(x^6 + (x^3)^2)} \right] = -\frac{i}{2}$ FUNCTIONS OF A **NEIGHBORHOOD** FUNCTIONS OF A **NEIGHBORHOOD** OF A Complex function ...

Dr. G.K. Prajapati

LNJPIT, Chapra

ntroduction

FUNCTIONS OF A COMPLEX VARIABLE

NEIGHBORHOOD

FUNCTIONS OF A

COMPLEX VARIABLE

 $\begin{array}{l} \text{NEIGHBORHO} \\ \text{OD} \\ \text{OF} \ Z_0 \end{array}$

FUNCTIONS OF A But along $y = x^3$ $= \lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \left[\frac{-ix^3(y)}{(x^6 + y^2)} \right] =$ $\lim_{x \to 0} \left[\frac{-ix^3(x^3)}{(x^6 + (x^3)^2)} \right] = -\frac{i}{2}$ In different paths we get different values of $\frac{df}{dz}$ i.e. 0 and $-\frac{i}{2}$. In such a case, the function is not differentiable at z = 0.

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

FUNCTIONS OF A COMPLEX VARIABLE But along $y = x^3$ $= \lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \left[\frac{-ix^3(y)}{(x^6 + y^2)} \right] = \lim_{x \to 0} \left[\frac{-ix^3(x^3)}{(x^6 + (x^3)^2)} \right] = -\frac{i}{2}$

NEIGHBORHCOD OF Z₀
In different paths we get different values of $\frac{df}{dz}$ i.e. 0 and FUNCTIONS OF A COMPLEX VARIABLE NEIGHBORHCOD OF Z₀
FUNCTIONS OF Z OF A

Dr. G.K. Prajapati

Chapra

Example

FUNCTIONS OF A

Prove that the function $f(z) = |z|^2$ is continuous everywhere but no where differentiable except at the origin.

Complex	
funct	ion
rance	
Dr.	G.K.

Dr. G.K. Prajapati

LNJPIT, Chapra

Introductior

FUNCTION OF A COMPLEX VARIABLE

NEIGHBORHOOD OF Zo

FUNCTIONS OF A COMPLEX

NEIGHBORHOOD OF Z_0

FUNCTIONS OF A

Thanks !!!

▲ロト ▲部ト ▲注ト ▲注ト

æ