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Example

Discuss D’Alembert’s solution of one dimensional wave
equation. or
Show that the general solution of the wave equation

c2
∂2u

∂x2
=
∂2u

∂t2
is u(x, t) = φ(x+ ct) + ψ(x− ct),

where φ and ψ are arbitrary functions.

Dr. G.K. Prajapati LNJPIT, Chapra Classification of Partial Differential ...



Classification
of Partial

Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Solution: Given equation is

∂2u

∂x2
=

1

c2
∂2u

∂t2

Let v and w be two new independent variables such that

w = x+ ct and v = x− ct (1)

Now

∂u

∂x
=
∂u

∂w

∂w

∂x
+
∂u

∂v

∂v

∂x
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Using equation (1), we have

∂u

∂x
=
∂u

∂w
+
∂u

∂v
So that

∂

∂x
=

∂

∂w
+

∂

∂v
(2)

Thus

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=⇒ ∂2u

∂x2
=

(
∂

∂w
+

∂

∂v

)(
∂u

∂w
+
∂u

∂v

)
∂2u

∂x2
=
∂2u

∂w2
+ 2

∂2u

∂w∂v
+
∂2u

∂v2
(3)

Again

∂u

∂t
=
∂u

∂w

∂w

∂t
+
∂u

∂v

∂v

∂t

Dr. G.K. Prajapati LNJPIT, Chapra Classification of Partial Differential ...



Classification
of Partial

Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Using equation (1), we have

∂u

∂t
= c

∂u

∂w
− c∂u

∂v
So that

∂

∂t
= c

(
∂

∂w
− ∂

∂v

)
(4)

Thus

∂2u

∂t2
=

∂

∂t

(
∂u

∂t

)
=⇒ ∂2u

∂t2
= c2

(
∂

∂w
− ∂

∂v

)(
∂u

∂w
− ∂u

∂v

)

∂2u

∂t2
= c2

(
∂2u

∂w2
− 2

∂2u

∂w∂v
+
∂2u

∂v2

)
=⇒ 1

c2
∂2u

∂t2
=

(
∂2u

∂w2
− 2

∂2u

∂w∂v
+
∂2u

∂v2

)
(5)
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Using (3) and (5) reduces to

∂2u

∂w2
+2

∂2u

∂w∂v
+
∂2u

∂v2
=
∂2u

∂w2
−2

∂2u

∂w∂v
+
∂2u

∂v2
=⇒ ∂2u

∂w∂v
= 0

(6)
∂

∂v

(
∂u

∂w

)
= 0 (7)
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Integrating (7) w.r.t. v, we get

∂u

∂w
= F (w), (8)

where F is an arbitrary function of w.
Integrating (8) w.r.t. w, we get

u =
∫
F (w)dw + ψ(v),

where ψ is an function of v. Then

u = φ(w) + ψ(v), where φ(w) =
∫
F (w)dw

or

u = φ(x+ ct) + ψ(x− ct).
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General solution of one-dimensional heat (diffusion)
equation satisfying the given boundary and initial

conditions

Consider one-dimensional heat equation

∂2u

∂x2
=

1

k

∂u

∂t
,

where u(x, t) is the temperature of the bar. If both the ends of
a bar of length a are at temperature zero and initial
temperature is to be prescribed function f(x) in the bar, then
find the temperature at a subsequent time t. More precisely,
the faces x = 0 and x = a of an infinite slab are maintained at
zero temperature. Given that the temperature u(x, t) = f(x)
at t = 0. Find the temperature at a subsequent time t.
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Solution: Given that

∂2u

∂x2
=

1

k

∂u

∂t
, (9)

with boundary conditions u(0, t) = 0, u(a, t) = 0.
The initial condition is given by u(x, 0) = f(x), 0 < x < a
Let the given equation has the solution of the form
u(x, t) = X(x)T (t), where X is function of x alone and T is

function of t alone. Now
∂2u

∂x2
= X ′′(x)T (t) and

∂u

∂t
= X(x)T ′(t). Putting these values in given equation, we

have

X ′′T =
1

k
XT ′ =⇒ X ′′

X
=

T ′

kT
, (10)
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Since x and t are independent variables, therefore above
equation can only true if each side is equal to the same
constant. i.e.

X ′′

X
=

T ′

kT
= µ(constant) =⇒ X ′′ − µX = 0 and

T ′ − µkT = 0

These are ordinary differential equation of second order and
first order with constant coefficient. Now to solve these two
equations

X ′′ − µX = 0 (11)

and
T ′ − µkT = 0. (12)

Now three cases arises:
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Case-I When µ = 0, then both equations reduces to

X ′′ = 0 =⇒ X = a1x+ a2

Using boundary conditions u(0, t) = 0 = u(a, t), the trial
solution u(x, t) = X(x)T(t) becomes

0 = X(0)T (t) and 0 = X(a)T (t).

Since T (t) = 0 =⇒ u(x, t) = 0, so we suppose that T (t) 6= 0.
Then we have X(0) = 0 and X(a) = 0. Now using these
boundary conditions, the solution X = a1x+ a2 becomes
0 = a1.0 + a2 and 0 = a1.a+ a2 =⇒ a1 = 0 = a2, so that
X(x) = 0, which yields u(x, t) = 0. So we reject case-I, when
µ = 0.
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Case-II When µ > 0, we can take µ = λ2(say), then
equations X ′′ − µX = 0 reduces to

X ′′ − λ2X = 0 =⇒ the auxiliary equation is
(m2 − λ2) = 0 =⇒ m = ±λ. Therefore its solution will be

X = b1e
λx + b2e

−λx

Using boundary conditions u(0, t) = 0 = u(a, t), the trial
solution u(x, t)X(x)T (t) becomes

0 = X(0)T (t) and 0 = X(a)T (t).

Since T (t) = 0 =⇒ u(x, t) = 0, so we suppose that T (t) 6= 0.
Then we have X(0) = 0 and X(a) = 0. Now using these
boundary conditions, the solution X = b1e

λx+ b2e
−λx becomes

0 = b1e
λ.0 + b2e

−λ.0 and 0 = b1e
λa + b2e

−λa =⇒ 0 = b1 + b2
and b1e

λa+ b2e
−λa =⇒ b1 = b2 = 0, so that X(x) = 0, which

yields u(x, t) = 0. So again we reject case-II, when µ > 0.
Dr. G.K. Prajapati LNJPIT, Chapra Classification of Partial Differential ...



Classification
of Partial

Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Case-III When µ < 0, we can take µ = −λ2(say), then first
equations reduces to

X ′′ + λ2X = 0 =⇒ the auxiliary equation is
(m2 + λ2) = 0 =⇒ m = ±λi. Therefore its solution will be

X = c1 cos(λx) + c2 sin(λx)

Using boundary conditions u(0, t) = 0 = u(a, t), the trial
solution becomes

0 = X(0)T (t) and 0 = X(a)T (t).

Since T (t) = 0 =⇒ u(x, t) = 0, so we suppose that T (t) 6= 0.
Then we have X(0) = 0 and X(a) = 0. Now using these
boundary conditions, the solution X = c1 cos(λx) + c2 sin(λx)
becomes 0 = c1 cos(λ.0) + c2 sin(λ.0) and
0 = c1 cos(λa) + c2 sin(λa) =⇒ c1 = 0 and c2 sin(λa) = 0
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Now for non-trivial solution of given wave equation, we can not
take c2 = 0

=⇒ sinλa = 0 =⇒ λa = nπ n = 1, 2, 3, ...

Thus λ =
nπ

a
, n = 1, 2, 3, ...

Hence non-zero solution Xn(x) are given by

Xn(x) = (c2)n sin
(nπx

a

)
(13)
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Now the solution corresponding to the equation T ′ + λ2kT = 0
is

T ′

T
= −λ2k (14)

By integrating we get

log T = −λ2kt+log c3 =⇒ T = c3e
−λ2kt =⇒ T = c3e

−(n2π2/a2)kt

(15)
Hence solution is Tn(t) = Dne

−C2
nt, where Cn = (n2π2k/a2)

and Dn = c3 are new arbitrary constants.
The general solution is

un(x, t) =

∞∑
n=1

En sin
(nπx

a

)
e−C

2
nt, (16)

where En = (c2)nDn is another new arbitrary constants.
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Substituting t = 0 in (16) and using initial condition
u(x, 0) = f(x), we get

f(x) =

∞∑
n=1

En sin
(nπx

a

)
(17)

Which are Fourier sin series of expansion f(x). Accordingly we
get

En =
2

a

∫ a

0
f(x) sin

nπx

a
dx (18)

Hence the required solution is given by the equation (16) and
En given by the equation (18).
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