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General solution of one-dimensional wave (vibrational)

equation satisfying the given boundary conditions
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Consider one-dimensional wave equation

∂2u

∂x2
=

1

c2
∂2u

∂t2
,

with boundary conditions u(0, t) = 0 and u(a, t) = 0, ∀t.
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Solution: Given that

∂2u

∂x2
=

1

c2
∂2u

∂t2
, (1)

with boundary conditions u(0, t) = 0 and u(a, t) = 0.
Let the given equation has the solution of the form
u(x, t) = X(x)T (t), where X is function of x alone and T is

function of t alone. Now
∂2u

∂x2
= X ′′(x)T (t) and

∂2u

∂t2
= X(x)T ′′(t).
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Putting these values in given equation, we have

X ′′T =
1

c2
XT ′′ =⇒ X ′′

X
=

T ′′

c2T
, (2)

Since x and t are independent variables, therefore above
equation can only true if each side is equal to the same
constant. i.e.

X ′′

X
=

T ′′

c2T
= k(constant) =⇒ X ′′ − kX = 0 and

T ′′ − c2kT = 0

These are ordinary differential equation of second order with
constant coefficient. Now to solve these two equations
X ′′ − kX = 0 and T ′′ − c2kT = 0, three cases arises:
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Case-I When k = 0, then both equations reduces to

X ′′ = 0 =⇒ X = a1x+ a2

and

T ′′ = 0 =⇒ T = a3t+ a4.

Thus the required solution is

u(x, t) = (a1x+ a2)(a3t+ a4). (3)
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Case-II When k > 0, we can take k = λ2(say), then both
equations reduces to

X ′′ − λ2X = 0 =⇒ the auxiliary equation is
(m2 − λ2) = 0 =⇒ m = ±λ. Therefore its solution will be

X = b1e
λx + b2e

−λx

and

T ′′ − c2λ2T = 0 =⇒ T = b3e
cλt + b4e

−cλt.

Thus the required solution is

u(x, t) = (b1e
λx + b2e

−λx)(b3e
cλt + b4e

−cλt). (4)
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Case-III When k < 0, we can take k = −λ2(say), then both
equations reduces to

X ′′ + λ2X = 0 =⇒ the auxiliary equation is
(m2 + λ2) = 0 =⇒ m = ±λi. Therefore its solution will be

X = c1 cos(λx) + c2 sin(λx)

and

T ′′ + c2λ2T = 0 =⇒ T = c3 cos(cλt) + c4 sin(cλt).

Thus the required solution is

u(x, t) = (c1 cos(λx) + c2 sin(λx))(c3 cos(cλt) + c4 sin(cλt)).
(5)

Thus the equation (3), (4) and (5) are various possible solution
of the given wave equation.
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Given boundary conditions are u(0, t) = u(a, t) = 0 ∀t In
view of the boundary condition, the solution given by the
equation (3) becomes

0 = a2(a3t+ a4) and 0 = (a1a+ a2)(a3t+ a2)

=⇒ a2 = 0 and (a1a+ a2) = 0 =⇒ a1 = a2 = 0

Hence u(x, t) = 0 ∀t. This is a trivial solution.
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Again, in view of the boundary condition, the solution given by
the equation (4) becomes

0 = (b1 + b2)(b3e
cλt + b4e

−cλt) and
0 = (b1e

λa + b2e
−λa)(b3e

cλt + b4e
−cλt)

=⇒ (b1 + b2) = 0 and b1e
λa + b2e

−λa = 0
=⇒ b1 = b2 = 0

Hence u(x, t) = 0 ∀t. This is also a trivial solution.
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Finally, in view of the boundary condition, the solution given by
the equation (5) becomes

0 = c1(c3 cos(cλt) + c4 sin(cλt)) and
0 = (c1 cos(λa) + c2 sin(λa))(c3 cos(cλt) + c4 sin(cλt))

=⇒ c1 = 0 and c2 sinλa = 0

Now for non-trivial solution of given wave equation, we can not
take c2 = 0

=⇒ sinλa = 0 =⇒ λa = nπ n = 1, 2, 3, ...

Thus λ =
nπ

a
, n = 1, 2, 3, ...
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Hence the solution given by the equation (5) becomes

un(x, t) = c2 sin
nπ

a

(
c3 cos

nπct

a
+ c4 sin

nπct

a

)
n = 1, 2, 3, ...

un(x, t) = sin
nπ

a

(
En cos

nπct

a
+ Fn sin

nπct

a

)
n = 1, 2, 3, ...

Where En = (c2c3) and Fn = (c2c4) are new arbitrary
constants.
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Since the given wave equation is linear, its most general
solution is obtained by applying the principle of superposition,
the required solution is

u(x, t) =
∑∞

n=1 un(x, t) =∑∞
n=1 sin

nπ

a

(
En cos

nπct

a
+ Fn sin

nπct

a

)
n = 1, 2, 3, ...
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General solution of one-dimensional wave (vibrational)
equation satisfying the given boundary and initial

conditions

Consider one-dimensional wave equation

∂2u

∂x2
=

1

c2
∂2u

∂t2
,

where u(x, t) is the deflection of the string. the solution of this
equation shows how the string moves. More precisely, if the
ends of string are fixed at x = 0 and x = a, we have the two
boundary conditions.

u(0, t) = 0 and u(a, t) = 0, ∀t.
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The form of the motion of the string will depend on the initial
deflection (deflection at t = 0) and on the intial velocity
(velocity at t = 0). Denoting the initial deflection by f(x) and
initial velocity by g(x), we get two initial conditions

u(x, 0) = f(x), 0 ≤ x ≤ a
and(

∂u

∂t

)
t=0

= g(x), i.e. ut(x, 0) = g(x) 0 ≤ x ≤ a.
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Solution: Given that

∂2u

∂x2
=

1

c2
∂2u

∂t2
, (6)

with boundary conditions u(0, t) = 0,
u(a, t) = 0, u(x, 0) = f(x) and ut(x, 0) = g(x), 0 ≤ x ≤ a.
Let the given equation has the solution of the form
u(x, t) = X(x)T (t), where X is function of x alone and T is

function of t alone. Now
∂2u

∂x2
= X ′′(x)T (t) and

∂2u

∂t2
= X(x)T ′′(t). Putting these values in given equation, we

have

X ′′T =
1

c2
XT ′′ =⇒ X ′′

X
=

T ′′

c2T
, (7)
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Since x and t are independent variables, therefore above
equation can only true if each side is equal to the same
constant. i.e.

X ′′

X
=

T ′′

c2T
= k(constant) =⇒ X ′′ − kX = 0 and

T ′′ − c2kT = 0

These are ordinary differential equation of second order with
constant coefficient. Now to solve these two equations
X ′′ − kX = 0 and T ′′ − c2kT = 0, three cases arises:
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Case-I When k = 0, then both equations reduces to

X ′′ = 0 =⇒ X = a1x+ a2

Using boundary conditions u(0, t) = 0 = u(a, t), the trial
solution becomes

0 = X(0)T (t) and 0 = X(a)T (t).

Since T (t) = 0 =⇒ u(x, t) = 0, so we suppose that T (t) 6= 0.
Then we have X(0) = 0 and X(a) = 0. Now using these
boundary conditions, the solution X = a1x+ a2 becomes
0 = a1.0 + a2 and 0 = a1.a+ a2 =⇒ a1 = 0 = a2, so that
X(x) = 0, which yields u(x, t) = 0. So we reject case-I, when
k = 0.
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Case-II When k > 0, we can take k = λ2(say), then first
equations reduces to

X ′′ − λ2X = 0 =⇒ the auxiliary equation is
(m2 − λ2) = 0 =⇒ m = ±λ. Therefore its solution will be

X = b1e
λx + b2e

−λx

Using boundary conditions u(0, t) = 0 = u(a, t), the trial
solution becomes

0 = X(0)T (t) and 0 = X(a)T (t).

Since T (t) = 0 =⇒ u(x, t) = 0, so we suppose that T (t) 6= 0.
Then we have X(0) = 0 and X(a) = 0. Now using these
boundary conditions, the solution X = b1e

λx+ b2e
−λx becomes

0 = b1e
λ.0 + b2e

−λ.0 and 0 = b1e
λa + b2e

−λa =⇒ 0 = b1 + b2
and b1e

λa+ b2e
−λa =⇒ b1 = b2 = 0, so that X(x) = 0, which

yields u(x, t) = 0. So again we reject case-II, when k > 0.
Dr. G.K. Prajapati LNJPIT, Chapra Classification of Partial Differential ...



Classification
of Partial

Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Case-III When k < 0, we can take k = −λ2(say), then first
equations reduces to

X ′′ + λ2X = 0 =⇒ the auxiliary equation is
(m2 + λ2) = 0 =⇒ m = ±λi. Therefore its solution will be

X = c1 cos(λx) + c2 sin(λx)

Using boundary conditions u(0, t) = 0 = u(a, t), the trial
solution becomes

0 = X(0)T (t) and 0 = X(a)T (t).
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Since T (t) = 0 =⇒ u(x, t) = 0, so we suppose that T (t) 6= 0.
Then we have X(0) = 0 and X(a) = 0. Now using these
boundary conditions, the solution X = c1 cos(λx) + c2 sin(λx)
becomes 0 = c1 cos(λ.0) + c2 sin(λ.0) and
0 = c1 cos(λa) + c2 sin(λa) =⇒ c1 = 0 and
0 = c2 sin(λa) = 0
Now for non-trivial solution of given wave equation, we can not
take c2 = 0

=⇒ sinλa = 0 =⇒ λa = nπ n = 1, 2, 3, ...

Thus λ =
nπ

a
, n = 1, 2, 3, ...

Hence non-zero solution Xn(x) are given by

(c2)n sin
(nπx

a

)
(8)
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Similarly the solution corresponding to the equation
T ′′ + λ2T = 0 is

Tn(t) = (c3)n cos
nπct

a
+ (c4)n sin

nπct

a
(9)

Hence the required solution is

u(x, t) =

∞∑
n=1

sin
nπx

a

(
En cos

nπct

a
+ Fn sin

nπct

a

)
(10)

Where En = ((c2)n(c3)) and Fn = ((c2)n(c4)n) are new
arbitrary constants.
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In order to find a solution which also satisfy u(x, 0) = f(x) and
ut(x, 0) = g(x), We differentiate equation (10) w.r.t. t,

∂u

∂t
=

∞∑
n=1

{
sin

nπx

a

(
−nπc
a

En sin
nπct

a
+
nπc

a
Fn cos

nπct

a

)}
(11)

Put t = 0 in equation (10) and (11) and using initial equation
u(x, 0) = f(x) and ut(x, 0) = g(x), we get
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f(x) =

∞∑
n=1

En sin
nπx

a
(12)

and

g(x) =

∞∑
n=1

nπcFn
a

sin
nπx

a
(13)

Which are Fourier sin series of expansion f(x) and g(x),
respectively. Accordingly we get

En =
2

a

∫ a

0
f(x) sin

nπx

a
dx (14)

and

Fn =
2

nπc

∫ a

0
g(x) sin

nπx

a
dx (15)
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Hence the required solution is given by the equation (10) where
En and Fn are given by the equation (14) and (15).
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