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Working rule for finding Particular Integral P.I. of
reducible/irreducible non-homogeneous linear partial

differential equations with constants coefficients.

Let the given reducible/irreducible non-homogeneous linear
partial differential equations with constants coefficients be
F (D,D′)z = φ(x, y)
Case-I: When φ(x, y) = eax+by and F (a, b) 6= 0.
Then, we get the P.I. by replacing D by a and D′ by b. i.e.

P.I. =
1

F (D,D′)
eax+by =

1

F (a, b)
eax+by
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Example

Solve the PDE (DD′ + aD + bD′ + ab)z = emx+ny.

Solution: The given equation can be written
as(D + b)(D′ + a)z = emx+ny,which is reducible. Hence
complementary function (C.F.) is

C.F. = e−bxf1(y) + e−ayf2(x), f1 and f2 are arbitrary
constant.

and

P.I. =
1

F (D,D′)
eax+by =

1

(D + b)(D′ + a)
emx+ny =

1

(m+ b, n+ a)
emx+ny.
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Hence the required solution is

z = e−bxf1(y) + e−ayf2(x) +
1

(m+ b, n+ a)
emx+ny.
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Solve the PDE (D2 −D′2 +D −D′)z = e2x+3y.

Solution: The given equation can be written as

[(D −D′)(D +D′) +D −D′] z = e2x+3y =⇒
(D −D′)(D +D′ + 1)z = e2x+3y,

which is reducible. Hence it’s complementary function (C.F.) is

C.F. = f1(y + x) + e−xf2(y − x), f1 and f2 are arbitrary
constant.
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and

P.I. =
1

F (D,D′)
eax+by =

1

(D −D′)(D +D′ + 1)
e2x+3y =

1

(2− 3)(2 + 3 + 1)
e2x+3y =⇒ = −1

6
e2x+3y.

Hence the required solution is

z = f1(y + x) + e−xf2(y − x)−
1

6
e2x+3y.
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Example

Solve the PDE (D2 − 4DD′ +D − 1)z = e3x−2y.

Solution: The given equation can not be written as linear
factors. Hence it’s complementary function (C.F.) is taken as a
trial solution

z =
∑
Aehx+ky.

Therefore we have
Dz =

∑
Ahehx+ky,D2z =

∑
Ah2ehx+kyand

DD′z =
∑
Ahkehx+ky. Put all these values in given equation

(D2 − 4DD′ +D − 1)z = 0, we have∑
Ah2ehx+ky−4

∑
Ahkehx+ky+

∑
Ahehx+ky−

∑
Aehx+ky =

0.

=⇒
∑
A(h2 − 4hk + h− 1)ehx+ky = 0 =⇒
(h2 − 4hk + h− 1) = 0.Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...
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(h2 + h− 1)

4h
.

Thus C.F. =
∑
Aehx+ky, where k =

(h2 + h− 1)

4h

P.I. =
1

F (D,D′)
eax+by =

1

(D2 − 4DD′ +D − 1)
e3x−2y =

1

(32 − 4.3.(−2) + 3− 1)
e3x−2y =

1

35
e3x−2y.

Hence the required solution is

z =
∑
Aehx+ky +

1

35
e3x−2y,where k =

(h2 + h− 1)

4h
.
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Exercise

Solve the following PDE:

(1) (D −D′ − 1)(D −D′ − 2)z = e2x−y Ans.
z = exf1(y + x) + e2xf2(y + x) + (1/2)e2x−1.

(2) (D3 − 3DD′ +D + 1)z = e2x+3y Ans.

z =
∑
Aehx+ky − 1

7
e2x+3y, where k =

(h3 + h+ 1)

3h
.

(3) (D2 −D′2 − 3D′)z = ex+2y Ans.

z =
∑
Aehx+ky − 1

9
ex+2y, where h =

√
k2 + 3k.

(4) (D2 −D′2 +D + 3D′ − 2)z = ex−y Ans.
z = e−2xf1(y + x) + exf2(y − x)− (1/4)ex−y.
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Case-II: When φ(x, y) = sin(ax+ by) or cos(ax+ by).
Then, we get the P.I., by replacing D2 by −a2,D′2 by −b2 and
DD′ by −ab in

P.I. =
1

F (D,D′)
sin(ax+ by) or

1

F (D,D′)
cos(ax+ by),

provided denominator should not be zero.

Example

Solve the PDE (D2 +DD′ +D′ − 1)z = sin(x+ 2y).

Solution: The given equation can be written as linear
factors(D + 1)(D +D′ − 1)z = sin(x+ 2y). Hence it’s
complementary function (C.F.) is

C.F. = e−xf1(y) + exf2(y − x).
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Now

P.I. =
1

F (D,D′)
sin(x+ 2y) =

1

(D2 +DD′ +D′ − 1)
sin(x+ 2y) =

1

(−12 + (−1.2) +D′ − 1)
sin(x+ 2y) =

1

D′ − 4
sin(x+ 2y).

P.I. = (D′ + 4)
1

D′2 − 42
sin(x+ 2y) =⇒

(D′ + 4)
1

−22 − 16
sin(x+ 2y).
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P.I. = − 1

20
(D′ + 4) sin(x+ 2y) =⇒

− 1

20
[D′ sin(x+ 2y) + 4 sin(x+ 2y)] .

P.I. = − 1

20
[2 cos(x+ 2y) + 4 sin(x+ 2y)] .

Hence the required solution is

z = e−xf1(y)+ exf2(y−x)−
1

10
[cos(x+ 2y) + 2 sin(x+ 2y)].
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Example

Solve the PDE (D −D′2)z = cos(x− 3y).

Solution: The given equation can not be written as linear
factors. Hence it’s complementary function (C.F.) is taken as a
trial solution

z =
∑
Aehx+ky.

So that Dz =
∑
Ahehx+kyand D′2z =

∑
Ak2ehx+ky.By

Putting these values in given equation (D−D′2)z = 0, we have∑
Ahehx+ky−

∑
Ak2ehx+ky = 0 =⇒

∑
A(h−k2)ehx+ky = 0.
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(D −D′2)z = 0, we have

h− k2 = 0 =⇒ h = k2.

Hence

C.F. =
∑
Aek

2x+ky.

P.I. =
1

F (D,D′)
cos(ax+ by) =

1

(D −D′2)
cos(x− 3y) =

1

(D − (−32))
cos(x− 3y) =

1

D + 9
cos(x− 3y).

P.I. = (D − 9)
1

D2 − 92
cos(x− 3y) =⇒

(D − 9)
1

−12 − 81
cos(x− 3y).
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P.I. = − 1

82
(D − 9) cos(x− 3y) =⇒

− 1

82
[D cos(x− 3y)− 9 cos(x− 3y)] .

P.I. = − 1

82
[− sin(x− 3y)− 9 cos(x− 3y)] =⇒ =

1

82
[sin(x− 3y) + 9 cos(x− 3y)] .

Hence the required solution is

z =
∑
Aek

2x+ky +
1

82
[sin(x− 3y) + 9 cos(x− 3y)].

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

P.I. = − 1

82
(D − 9) cos(x− 3y) =⇒

− 1

82
[D cos(x− 3y)− 9 cos(x− 3y)] .

P.I. = − 1

82
[− sin(x− 3y)− 9 cos(x− 3y)] =⇒ =

1

82
[sin(x− 3y) + 9 cos(x− 3y)] .

Hence the required solution is

z =
∑
Aek

2x+ky +
1

82
[sin(x− 3y) + 9 cos(x− 3y)].

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

P.I. = − 1

82
(D − 9) cos(x− 3y) =⇒

− 1

82
[D cos(x− 3y)− 9 cos(x− 3y)] .

P.I. = − 1

82
[− sin(x− 3y)− 9 cos(x− 3y)] =⇒ =

1

82
[sin(x− 3y) + 9 cos(x− 3y)] .

Hence the required solution is

z =
∑
Aek

2x+ky +
1

82
[sin(x− 3y) + 9 cos(x− 3y)].

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

P.I. = − 1

82
(D − 9) cos(x− 3y) =⇒

− 1

82
[D cos(x− 3y)− 9 cos(x− 3y)] .

P.I. = − 1

82
[− sin(x− 3y)− 9 cos(x− 3y)] =⇒ =

1

82
[sin(x− 3y) + 9 cos(x− 3y)] .

Hence the required solution is

z =
∑
Aek

2x+ky +
1

82
[sin(x− 3y) + 9 cos(x− 3y)].

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

P.I. = − 1

82
(D − 9) cos(x− 3y) =⇒

− 1

82
[D cos(x− 3y)− 9 cos(x− 3y)] .

P.I. = − 1

82
[− sin(x− 3y)− 9 cos(x− 3y)] =⇒ =

1

82
[sin(x− 3y) + 9 cos(x− 3y)] .

Hence the required solution is

z =
∑
Aek

2x+ky +
1

82
[sin(x− 3y) + 9 cos(x− 3y)].

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

P.I. = − 1

82
(D − 9) cos(x− 3y) =⇒

− 1

82
[D cos(x− 3y)− 9 cos(x− 3y)] .

P.I. = − 1

82
[− sin(x− 3y)− 9 cos(x− 3y)] =⇒ =

1

82
[sin(x− 3y) + 9 cos(x− 3y)] .

Hence the required solution is

z =
∑
Aek

2x+ky +
1

82
[sin(x− 3y) + 9 cos(x− 3y)].

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...



Homogeneous
Linear Partial
Differential ...

Dr. G.K.
Prajapati

LNJPIT,
Chapra

Introduction

Exercise

Solve the following PDE:

(1)
∂2z

∂x2
− ∂2z

∂x∂y
+
∂z

∂y
− z = cos(x+ 2y) Ans.

z = exf1(y) + e−xf2(y + x) + (1/2) sin(x+ 2y).

(2) (D2−DD′− 2D)z = sin(3x+4y) Ans. z = f1(y) +
e2xf2(y + x) + (1/15) [sin(3x+ 4y) + 2 cos(3x+ 4y)].

(3) (D −D′ − 1)(D −D′ − 2)z = sin(2x+ 3y) Ans.
z = exf1(y + x) + e2xf2(y + x) +
(1/10) [sin(2x+ 3y)− 12 cos(2x+ 3y)].

(4) (D2 −D′)z = cos(3x− y) Ans.

z =
∑
Aehx+h2y − 1

82
[− sin(3x− y) + 9 cos(3x− y)].
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