

Lok Nayak Jai Prakash Institute of Technology Chapra, Bihar-841302

Homogeneous Linear Partial Differential ...

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Mathematics-II (Differential Equations) Lecture Notes April 10, 2020

by

Dr. G.K.Prajapati Department of Applied Science and Humanities LNJPIT, Chapra, Bihar-841302

- 4 同 ト 4 ヨ ト 4 ヨ ト

Introduction

Homogeneous Linear Partial Differential ...

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Working rule for finding C.F. of irreducible non-homogeneous linear partial differential equations with constants coefficients.

Let the given irreducible non-homogeneous linear partial differential equations with constants coefficients be $F(D, D')z = \phi(x, y)$ **Step-I**: If necessary Factorize F(D, D') in the form $F_1(D, D')F_2(D, D')$, where $F_1(D, D')$ consists of product of linear factors in D, D' and $F_2(D, D')$ consists of product of irreducible factors in D, D'.

イロト イポト イヨト イヨト

Introduction

Homogeneous Linear Partial Differential ...

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Working rule for finding C.F. of irreducible non-homogeneous linear partial differential equations with constants coefficients.

Let the given irreducible non-homogeneous linear partial differential equations with constants coefficients be $F(D,D')z = \phi(x,y)$

Step-I: If necessary Factorize F(D, D') in the form $F_1(D, D')F_2(D, D')$, where $F_1(D, D')$ consists of product of linear factors in D, D' and $F_2(D, D')$ consists of product of irreducible factors in D, D'.

イロト イポト イヨト イヨト

Introduction

Homogeneous Linear Partial Differential ...

Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Working rule for finding C.F. of irreducible non-homogeneous linear partial differential equations with constants coefficients.

Let the given irreducible non-homogeneous linear partial differential equations with constants coefficients be $F(D, D')z = \phi(x, y)$ **Step-I**: If necessary Factorize F(D, D') in the form $F_1(D, D')F_2(D, D')$, where $F_1(D, D')$ consists of product of linear factors in D, D' and $F_2(D, D')$ consists of product of irreducible factors in D, D'.

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

$\mbox{Step-II}:$ Write the part of C.F. of linear factors $F_1(D,D')$ as usual method

Step-III: Write the part of C.F. of irreducible factors $F_2(D, D')$ by taking a trial solution

$$C.F. = \sum Ae^{hx+ky},$$

where A, h and k are arbitrary constants such that F(h, k) = 0**Step-IV**: Adding the part of C.F. of reducible factors $F_1(D, D')$, obtained in Step-II and part of C.F. of irreducible factors $F_2(D, D')$, obtained in Step-III.

- 4 回 ト 4 ヨ ト 4 ヨ ト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Step-II: Write the part of C.F. of linear factors $F_1(D, D')$ as usual method **Step-III**: Write the part of C.F. of irreducible factors $F_2(D, D')$ by taking a trial solution

 $C.F. = \sum Ae^{hx+ky},$

where A, h and k are arbitrary constants such that F(h,k) = 0**Step-IV**: Adding the part of C.F. of reducible factors $F_1(D, D')$, obtained in Step-II and part of C.F. of irreducible factors $F_2(D, D')$, obtained in Step-III.

・ロト ・回 ト ・ヨト ・ヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Step-II: Write the part of C.F. of linear factors $F_1(D, D')$ as usual method **Step-III**: Write the part of C.F. of irreducible factors $F_2(D, D')$ by taking a trial solution

$$C.F. = \sum Ae^{hx+ky}$$
,

where A, h and k are arbitrary constants such that F(h, k) = 0Step-IV: Adding the part of C.F. of reducible factors $F_1(D, D')$, obtained in Step-II and part of C.F. of irreducible factors $F_2(D, D')$, obtained in Step-III.

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Step-II: Write the part of C.F. of linear factors $F_1(D, D')$ as usual method **Step-III**: Write the part of C.F. of irreducible factors

 $F_2(D, D')$ by taking a trial solution

$$C.F. = \sum Ae^{hx+ky}$$
,

where A, h and k are arbitrary constants such that F(h, k) = 0**Step-IV**: Adding the part of C.F. of reducible factors $F_1(D, D')$, obtained in Step-II and part of C.F. of irreducible factors $F_2(D, D')$, obtained in Step-III.

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE $(D - D'^2)z = 0.$

Solution: Here $D - D'^2$ is not a linear factors in D and D'. Let the trial solution of given equation is

$$z = \sum A e^{hx + ky}$$

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$. Putting these values in the given equation, we get

$$Ahe^{hx+ky} - Ak^2e^{hx+ky} = 0 \implies A(h-k^2)e^{hx+ky} = 0$$

$$h - k^2 = 0 \implies h = k^2.$$

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE $(D - D'^2)z = 0$.

Solution: Here $D - D'^2$ is not a linear factors in D and D'. Let the trial solution of given equation is

$$z = \sum A e^{hx + ky}$$

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$. Putting these values in the given equation, we get

 $Ahe^{hx+ky} - Ak^2e^{hx+ky} = 0 \implies A(h-k^2)e^{hx+ky} = 0$

$$h - k^2 = 0 \implies h = k^2.$$

イロト イポト イヨト イヨト 二日

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE $(D - D'^2)z = 0$.

Solution: Here $D - D'^2$ is not a linear factors in D and D'. Let the trial solution of given equation is

$$z = \sum A e^{hx + ky}$$

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$. Putting these values in the given equation, we get

 $Ahe^{hx+ky} - Ak^2e^{hx+ky} = 0 \implies A(h-k^2)e^{hx+ky} = 0$

$$h - k^2 = 0 \implies h = k^2.$$

イロト イポト イヨト イヨト 二日

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE $(D - D'^2)z = 0$.

Solution: Here $D - D'^2$ is not a linear factors in D and D'. Let the trial solution of given equation is

$$z = \sum A e^{hx + ky}$$

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$. Putting these values in the given equation, we get

 $Ahe^{hx+ky} - Ak^2e^{hx+ky} = 0 \implies A(h-k^2)e^{hx+ky} = 0$

$$h - k^2 = 0 \implies h = k^2.$$

イロト イポト イヨト イヨト 二日

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE $(D - D'^2)z = 0$.

Solution: Here $D - D'^2$ is not a linear factors in D and D'. Let the trial solution of given equation is

$$z = \sum A e^{hx + ky}$$

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$.Putting these values in the given equation, we get

 $Ahe^{hx+ky} - Ak^2e^{hx+ky} = 0 \implies A(h-k^2)e^{hx+ky} = 0$

$$h - k^2 = 0 \implies h = k^2.$$

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE $(D - D'^2)z = 0$.

Solution: Here $D - D'^2$ is not a linear factors in D and D'. Let the trial solution of given equation is

$$z = \sum A e^{hx + ky}$$

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$.Putting these values in the given equation, we get

$$Ahe^{hx+ky} - Ak^2e^{hx+ky} = 0 \implies A(h-k^2)e^{hx+ky} = 0$$

$$h - k^2 = 0 \implies h = k^2.$$

・ロト ・回ト ・ヨト ・ヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE $(D - D'^2)z = 0$.

Solution: Here $D - D'^2$ is not a linear factors in D and D'. Let the trial solution of given equation is

$$z = \sum A e^{hx + ky}$$

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$.Putting these values in the given equation, we get

$$Ahe^{hx+ky} - Ak^2e^{hx+ky} = 0 \implies A(h-k^2)e^{hx+ky} = 0$$

$$h - k^2 = 0 \implies h = k^2.$$

イロト 不得 トイヨト イヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE $(D - D'^2)z = 0$.

Solution: Here $D - D'^2$ is not a linear factors in D and D'. Let the trial solution of given equation is

$$z = \sum A e^{hx + ky}$$

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$.Putting these values in the given equation, we get

$$Ahe^{hx+ky} - Ak^2e^{hx+ky} = 0 \implies A(h-k^2)e^{hx+ky} = 0$$

$$h - k^2 = 0 \implies h = k^2.$$

イロト 不得 トイヨト イヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Replacing h by $k^2, \, {\rm the \; most \; general \; solution \; of the given equation is }$

$$z = \sum A e^{k^2 x + ky},$$

where A and k are arbitrary constant.

Image: A matched block

Э

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Replacing h by k^2 , the most general solution of the given equation is

$$z = \sum A e^{k^2 x + ky},$$

where A and k are arbitrary constant.

Image: A matched block

Э

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Replacing h by k^2 , the most general solution of the given equation is

$$z = \sum A e^{k^2 x + ky},$$

where A and k are arbitrary constant.

- 10

3.1

3.1 3

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE
$$(D - 2D' - 1)(D - 2D'^2 - 1)z = 0.$$

Solution: Here (D - 2D' - 1) is a linear factors in D and D'. Therefore its complementary function (C.F.) is

$$e^x f_1(y+2x),$$

where f_1 is an arbitrary function. To find the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

イロト イポト イヨト イヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE
$$(D - 2D' - 1)(D - 2D'^2 - 1)z = 0.$$

Solution: Here (D - 2D' - 1) is a linear factors in D and D'. Therefore its complementary function (C.F.) is

$$e^x f_1(y+2x),$$

where f_1 is an arbitrary function. To find the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

イロト イポト イヨト イヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE
$$(D - 2D' - 1)(D - 2D'^2 - 1)z = 0$$
.

Solution: Here (D - 2D' - 1) is a linear factors in D and D'. Therefore its complementary function (C.F.) is

 $e^x f_1(y+2x),$

where f_1 is an arbitrary function. To find the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

・ロト ・回ト ・ヨト ・ヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE
$$(D - 2D' - 1)(D - 2D'^2 - 1)z = 0.$$

Solution: Here (D - 2D' - 1) is a linear factors in D and D'. Therefore its complementary function (C.F.) is

$$e^x f_1(y+2x)$$
,

where f_1 is an arbitrary function. To find the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

イロト イポト イヨト イヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE
$$(D - 2D' - 1)(D - 2D'^2 - 1)z = 0.$$

Solution: Here (D - 2D' - 1) is a linear factors in D and D'. Therefore its complementary function (C.F.) is

$$e^x f_1(y+2x)$$
,

where f_1 is an arbitrary function. To find the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

イロト 不得 トイヨト イヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE
$$(D - 2D' - 1)(D - 2D'^2 - 1)z = 0.$$

Solution: Here (D - 2D' - 1) is a linear factors in D and D'. Therefore its complementary function (C.F.) is

$$e^x f_1(y+2x)$$
,

where f_1 is an arbitrary function. To find the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE
$$(D - 2D' - 1)(D - 2D'^2 - 1)z = 0.$$

Solution: Here (D - 2D' - 1) is a linear factors in D and D'. Therefore its complementary function (C.F.) is

$$e^x f_1(y+2x)$$
,

where f_1 is an arbitrary function. To find the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

・ロン ・回と ・ヨン・ モン・

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$. Putting these values in the factor $(D - 2D'^2 - 1)z$, we get

$$Ahe^{hx+ky} - 2Ak^2e^{hx+ky} - \sum Ae^{hx+ky} = 0 \implies A(h-2k^2-1)e^{hx+ky} = 0$$

$$h - 2k^2 - 1 = 0 \implies h = 2k^2 + 1.$$

Replacing h by $2k^2 + 1$, the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$ is $C.F. = \sum Ae^{(k^2+1)x+ky}$. Now the required general solution of the given equation is

$$z = e^{x} f_1(y + 2x) + \sum A e^{(k^2 + 1)x + ky},$$

<ロト < 回 > < 回 > < 回 > < 回 >

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$. Putting these values in the factor $(D-2D'^2-1)z$, we get

$$Ahe^{hx+ky} - 2Ak^2e^{hx+ky} - \sum Ae^{hx+ky} = 0 \implies A(h-2k^2-1)e^{hx+ky} = 0$$

$$h - 2k^2 - 1 = 0 \implies h = 2k^2 + 1.$$

Replacing h by $2k^2 + 1$, the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$ is $C.F. = \sum Ae^{(k^2+1)x+ky}$. Now the required general solution of the given equation is

$$z = e^{x} f_1(y + 2x) + \sum A e^{(k^2 + 1)x + ky},$$

イロト イポト イラト イラト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$. Putting these values in the factor $(D-2D'^2-1)z$, we get

$$Ahe^{hx+ky} - 2Ak^2e^{hx+ky} - \sum_{k=0}^{\infty} Ae^{hx+ky} = 0 \implies A(h-2k^2-1)e^{hx+ky} = 0$$

 $h - 2k^2 - 1 = 0 \implies h = 2k^2 + 1.$

Replacing h by $2k^2 + 1$, the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$ is $C.F. = \sum Ae^{(k^2+1)x+ky}$. Now the required general solution of the given equation is

$$z = e^{x} f_1(y + 2x) + \sum A e^{(k^2 + 1)x + ky},$$

イロト イポト イラト イ

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$. Putting these values in the factor $(D-2D'^2-1)z$, we get

$$Ahe^{hx+ky} - 2Ak^2e^{hx+ky} - \sum_{k=0}^{\infty} Ae^{hx+ky} = 0 \implies A(h-2k^2-1)e^{hx+ky} = 0$$

 $h - 2k^2 - 1 = 0 \implies h = 2k^2 + 1.$

Replacing h by $2k^2 + 1$, the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$ is $C.F. = \sum Ae^{(k^2+1)x+ky}$. Now the required general solution of the given equation is

$$z = e^{x} f_1(y + 2x) + \sum A e^{(k^2 + 1)x + ky},$$

イロト イポト イヨト イヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$. Putting these values in the factor $(D-2D'^2-1)z$, we get

$$Ahe^{hx+ky} - 2Ak^2e^{hx+ky} - \sum_{k=0}^{\infty} Ae^{hx+ky} = 0 \implies A(h-2k^2-1)e^{hx+ky} = 0$$

$$h - 2k^2 - 1 = 0 \implies h = 2k^2 + 1.$$

Replacing h by $2k^2 + 1$, the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$ is $C.F. = \sum Ae^{(k^2+1)x+ky}$. Now the required general solution of the given equation is

$$z = e^{x} f_1(y + 2x) + \sum A e^{(k^2 + 1)x + ky},$$

イロト イポト イヨト イヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$. Putting these values in the factor $(D-2D'^2-1)z$, we get

$$Ahe^{hx+ky} - 2Ak^2e^{hx+ky} - \sum_{k=0}^{\infty} Ae^{hx+ky} = 0 \implies A(h-2k^2-1)e^{hx+ky} = 0$$

$$h - 2k^2 - 1 = 0 \implies h = 2k^2 + 1.$$

Replacing h by $2k^2 + 1$, the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$ is $C.F. = \sum Ae^{(k^2+1)x+ky}$. Now the required general solution of the given equation is

$$z = e^{x} f_1(y + 2x) + \sum A e^{(k^2 + 1)x + ky},$$

・ロト ・回ト ・ヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$. Putting these values in the factor $(D-2D'^2-1)z$, we get

$$Ahe^{hx+ky} - 2Ak^2e^{hx+ky} - \sum_{k=0}^{\infty} Ae^{hx+ky} = 0 \implies A(h-2k^2-1)e^{hx+ky} = 0$$

$$h - 2k^2 - 1 = 0 \implies h = 2k^2 + 1.$$

Replacing h by $2k^2 + 1$, the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$ is $C.F. = \sum Ae^{(k^2+1)x+ky}$. Now the required general solution of the given equation is

$$z = e^{x} f_1(y+2x) + \sum A e^{(k^2+1)x+ky},$$

where A and k are arbitrary constant.

イロト イポト イヨト イヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$. Putting these values in the factor $(D-2D'^2-1)z$, we get

$$Ahe^{hx+ky} - 2Ak^2e^{hx+ky} - \sum_{k=0}^{\infty} Ae^{hx+ky} = 0 \implies A(h-2k^2-1)e^{hx+ky} = 0$$

$$h - 2k^2 - 1 = 0 \implies h = 2k^2 + 1.$$

Replacing h by $2k^2 + 1$, the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$ is $C.F. = \sum Ae^{(k^2+1)x+ky}$. Now the required general solution of the given equation is

$$z = e^{x} f_1(y + 2x) + \sum A e^{(k^2 + 1)x + ky},$$

イロト イポト イヨト イヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Then $Dz = Ahe^{hx+ky}$ and $D'^2z = Ak^2e^{hx+ky}$. Putting these values in the factor $(D-2D'^2-1)z$, we get

$$Ahe^{hx+ky} - 2Ak^2e^{hx+ky} - \sum_{k=0}^{\infty} Ae^{hx+ky} = 0 \implies A(h-2k^2-1)e^{hx+ky} = 0$$

$$h - 2k^2 - 1 = 0 \implies h = 2k^2 + 1.$$

Replacing h by $2k^2 + 1$, the complementary function (C.F.) corresponding factor $(D - 2D'^2 - 1)z$ is $C.F. = \sum Ae^{(k^2+1)x+ky}$. Now the required general solution of the given equation is

$$z = e^{x} f_{1}(y + 2x) + \sum A e^{(k^{2} + 1)x + ky},$$

イロト 不得 トイヨト イヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE
$$(2D^4 - 3D^2D' + D'^2)z = 0.$$

Solution: Given equation can be written as $(2D^2 - D')(D^2 - D')z = 0$. To find the complementary function (C.F.) corresponding factor $(D^2 - D')z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

Then $D^2z = Ah^2e^{hx+ky}$ and $D'z = Ake^{hx+ky}$. Putting these values in the factor $(D^2 - D')z$, we get

 $Ah^{2}e^{hx+ky} - Ake^{hx+ky} = 0 \implies A(h^{2} - k)e^{hx+ky} = 0$

(日) (同) (E) (E) (E)

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE
$$(2D^4 - 3D^2D' + D'^2)z = 0.$$

Solution: Given equation can be written as $(2D^2 - D')(D^2 - D')z = 0$. To find the complementary function (C.F.) corresponding factor $(D^2 - D')z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

Then $D^2z = Ah^2e^{hx+ky}$ and $D'z = Ake^{hx+ky}$. Putting these values in the factor $(D^2 - D')z$, we get

 $Ah^{2}e^{hx+ky} - Ake^{hx+ky} = 0 \implies A(h^{2} - k)e^{hx+ky} = 0$

イロト 不得 とうぼう うまとう ほう

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE
$$(2D^4 - 3D^2D' + D'^2)z = 0.$$

Solution: Given equation can be written as $(2D^2 - D')(D^2 - D')z = 0$. To find the complementary function (C.F.) corresponding factor $(D^2 - D')z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

Then $D^2z = Ah^2e^{hx+ky}$ and $D'z = Ake^{hx+ky}$. Putting these values in the factor $(D^2 - D')z$, we get

 $Ah^{2}e^{hx+ky} - Ake^{hx+ky} = 0 \implies A(h^{2} - k)e^{hx+ky} = 0$

イロト イポト イヨト イヨト 二日

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE
$$(2D^4 - 3D^2D' + D'^2)z = 0.$$

Solution: Given equation can be written as $(2D^2 - D')(D^2 - D')z = 0$. To find the complementary function (C.F.) corresponding factor $(D^2 - D')z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

Then $D^2z = Ah^2e^{hx+ky}$ and $D'z = Ake^{hx+ky}$. Putting these values in the factor $(D^2 - D')z$, we get

 $Ah^{2}e^{hx+ky} - Ake^{hx+ky} = 0 \implies A(h^{2} - k)e^{hx+ky} = 0$

イロト 不得 トイラト イラト ニラー

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE
$$(2D^4 - 3D^2D' + D'^2)z = 0.$$

Solution: Given equation can be written as $(2D^2 - D')(D^2 - D')z = 0$. To find the complementary function (C.F.) corresponding factor $(D^2 - D')z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

Then $D^2z = Ah^2e^{hx+ky}$ and $D'z = Ake^{hx+ky}$. Putting these values in the factor $(D^2 - D')z$, we get

 $Ah^{2}e^{hx+ky} - Ake^{hx+ky} = 0 \implies A(h^{2} - k)e^{hx+ky} = 0$

イロト 不得 トイラト イラト ニラー

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE
$$(2D^4 - 3D^2D' + D'^2)z = 0.$$

Solution: Given equation can be written as $(2D^2 - D')(D^2 - D')z = 0$. To find the complementary function (C.F.) corresponding factor $(D^2 - D')z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

Then $D^2z = Ah^2e^{hx+ky}$ and $D'z = Ake^{hx+ky}$. Putting these values in the factor $(D^2 - D')z$, we get

 $Ah^{2}e^{hx+ky} - Ake^{hx+ky} = 0 \implies A(h^{2} - k)e^{hx+ky} = 0$

イロト イポト イヨト イヨト 二日

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solve the PDE
$$(2D^4 - 3D^2D' + D'^2)z = 0.$$

Solution: Given equation can be written as $(2D^2 - D')(D^2 - D')z = 0$. To find the complementary function (C.F.) corresponding factor $(D^2 - D')z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

Then $D^2z = Ah^2e^{hx+ky}$ and $D'z = Ake^{hx+ky}$. Putting these values in the factor $(D^2 - D')z$, we get

 $Ah^{2}e^{hx+ky} - Ake^{hx+ky} = 0 \implies A(h^{2} - k)e^{hx+ky} = 0$

イロト イポト イヨト イヨト 二日

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solution: Given equation can be written as
$$(2D^2 - D^2) = 0$$
.

Solve the PDF $(2D^4 - 3D^2D' + D'^2) = 0$

 $(2D^2 - D')(D^2 - D')z = 0$. To find the complementary function (C.F.) corresponding factor $(D^2 - D')z$. Let the trial solution of this factor is

$$z = \sum A e^{hx + ky}$$

Then $D^2z = Ah^2e^{hx+ky}$ and $D'z = Ake^{hx+ky}$. Putting these values in the factor $(D^2 - D')z$, we get

 $Ah^{2}e^{hx+ky} - Ake^{hx+ky} = 0 \implies A(h^{2} - k)e^{hx+ky} = 0$

イロト 不得 トイラト イラト ニラー

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Example

Solution: Given equation can be written as
$$(2D^2 - D')(D^2 - D')z = 0$$
. To find the complementary function (C.F.) corresponding factor $(D^2 - D')z$. Let the trial

Solve the PDE $(2D^4 - 3D^2D' + D'^2)z = 0.$

solution of this factor is

$$z = \sum A e^{hx + ky}$$

Then $D^2z = Ah^2e^{hx+ky}$ and $D'z = Ake^{hx+ky}$. Putting these values in the factor $(D^2 - D')z$, we get

$$Ah^{2}e^{hx+ky} - Ake^{hx+ky} = 0 \implies A(h^{2} - k)e^{hx+ky} = 0$$

・ロン ・回 と ・ ヨ と …

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

$$h^2 - k = 0 \implies k = h^2.$$

Replacing k by h^2 , the complementary function (C.F.) corresponding factor $(D^2 - D')z$ is $C.F. = \sum Ae^{hx+h^2y}$.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

$$h^2 - k = 0 \implies k = h^2.$$

Replacing k by h^2 , the complementary function (C.F.) corresponding factor $(D^2 - D')z$ is $C.F. = \sum Ae^{hx+h^2y}$.

・ 同・ ・ ヨ・・・

3.1 3

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

$$h^2 - k = 0 \implies k = h^2.$$

Replacing k by h^2 , the complementary function (C.F.) corresponding factor $(D^2 - D')z$ is $C.F. = \sum Ae^{hx+h^2y}$.

(4 回) (4 回) (4 回)

Э

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Again to find the complementary function (C.F.) corresponding factor $(2D^2 - D')z$.Let the trial solution of this factor is

 $z = \sum A_1 e^{h_1 x + k_1 y}$

Then $D^2z = A_1h_1^2e^{h_1x+k_1y}$ and $D'z = A_1k_1e^{h_1x+k_1y}$. Putting these values in the factor $(2D^2 - D')z$, we get

 $2A_1h_1^2e^{h_1x+k_1y} - A_1k_1e^{h_1x+k_1y} = 0 \implies A_1(2h_1^2 - k_1)e^{h_1x+k_1y} = 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Again to find the complementary function (C.F.) corresponding factor $(2D^2 - D')z$.Let the trial solution of this factor is

 $z = \sum A_1 e^{h_1 x + k_1 y}$

Then $D^2z = A_1h_1^2e^{h_1x+k_1y}$ and $D'z = A_1k_1e^{h_1x+k_1y}$. Putting these values in the factor $(2D^2 - D')z$, we get

 $2A_1h_1^2e^{h_1x+k_1y} - A_1k_1e^{h_1x+k_1y} = 0 \implies A_1(2h_1^2 - k_1)e^{h_1x+k_1y} = 0$

・同下 ・ヨト ・ヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Again to find the complementary function (C.F.) corresponding factor $(2D^2 - D')z$.Let the trial solution of this factor is

$$z = \sum A_1 e^{h_1 x + k_1 y}$$

Then $D^2z = A_1h_1^2e^{h_1x+k_1y}$ and $D'z = A_1k_1e^{h_1x+k_1y}$. Putting these values in the factor $(2D^2 - D')z$, we get

$$2A_1h_1^2e^{h_1x+k_1y} - A_1k_1e^{h_1x+k_1y} = 0 \implies A_1(2h_1^2 - k_1)e^{h_1x+k_1y} = 0$$

・ 同下 ・ ヨト ・ ヨト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Again to find the complementary function (C.F.) corresponding factor $(2D^2 - D')z$.Let the trial solution of this factor is

$$z = \sum A_1 e^{h_1 x + k_1 y}$$

Then $D^2z = A_1h_1^2e^{h_1x+k_1y}$ and $D'z = A_1k_1e^{h_1x+k_1y}$. Putting these values in the factor $(2D^2 - D')z$, we get

$$2A_1h_1^2e^{h_1x+k_1y} - A_1k_1e^{h_1x+k_1y} = 0 \implies A_1(2h_1^2 - k_1)e^{h_1x+k_1y} = 0$$

(日本) (日本) (日本)

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Again to find the complementary function (C.F.) corresponding factor $(2D^2 - D')z$.Let the trial solution of this factor is

$$z = \sum A_1 e^{h_1 x + k_1 y}$$

Then $D^2z = A_1h_1^2e^{h_1x+k_1y}$ and $D'z = A_1k_1e^{h_1x+k_1y}$. Putting these values in the factor $(2D^2 - D')z$, we get

$$2A_1h_1^2e^{h_1x+k_1y} - A_1k_1e^{h_1x+k_1y} = 0 \implies A_1(2h_1^2 - k_1)e^{h_1x+k_1y} = 0$$

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Again to find the complementary function (C.F.) corresponding factor $(2D^2 - D')z$.Let the trial solution of this factor is

$$z = \sum A_1 e^{h_1 x + k_1 y}$$

Then $D^2z = A_1h_1^2e^{h_1x+k_1y}$ and $D'z = A_1k_1e^{h_1x+k_1y}$. Putting these values in the factor $(2D^2 - D')z$, we get

 $2A_1h_1^2e^{h_1x+k_1y} - A_1k_1e^{h_1x+k_1y} = 0 \implies A_1(2h_1^2 - k_1)e^{h_1x+k_1y} = 0$

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Again to find the complementary function (C.F.) corresponding factor $(2D^2 - D')z$.Let the trial solution of this factor is

$$z = \sum A_1 e^{h_1 x + k_1 y}$$

Then $D^2z = A_1h_1^2e^{h_1x+k_1y}$ and $D'z = A_1k_1e^{h_1x+k_1y}$. Putting these values in the factor $(2D^2 - D')z$, we get

$$2A_1h_1^2e^{h_1x+k_1y} - A_1k_1e^{h_1x+k_1y} = 0 \implies A_1(2h_1^2 - k_1)e^{h_1x+k_1y} = 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

$2h_1^2 - k_1 = 0 \implies k_1 = 2h_1^2.$

Replacing k_1 by $2h_1^2$, the complementary function (C.F.) corresponding factor $(2D^2 - D')z$ is $C.F. = \sum A_1 e^{h_1 x + 2h_1^2 y}$. Now the required general solution of the given equation is

$$z = \sum A e^{hx + h^2 y} + \sum A_1 e^{h_1 x + 2h_1^2 y},$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

where A, A_1 , h and h_1 are arbitrary constant.

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

 $2h_1^2 - k_1 = 0 \implies k_1 = 2h_1^2.$

Replacing k_1 by $2h_1^2$, the complementary function (C.F.) corresponding factor $(2D^2 - D')z$ is $C.F. = \sum A_1 e^{h_1 x + 2h_1^2 y}$. Now the required general solution of the given equation is

 $z = \sum A e^{hx + h^2 y} + \sum A_1 e^{h_1 x + 2h_1^2 y},$

・ 同 ト ・ ヨ ト ・ ヨ ト

where A, A_1 , h and h_1 are arbitrary constant.

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

$$2h_1^2 - k_1 = 0 \implies k_1 = 2h_1^2.$$

Replacing k_1 by $2h_1^2$, the complementary function (C.F.) corresponding factor $(2D^2 - D')z$ is $C.F. = \sum A_1 e^{h_1 x + 2h_1^2 y}$. Now the required general solution of the given equation is

$$z = \sum A e^{hx + h^2 y} + \sum A_1 e^{h_1 x + 2h_1^2 y},$$

where A, A_1 , h and h_1 are arbitrary constant.

> Dr. G.K. Prajapati

LNJPIT, Chapra

Introduction

Thanks !!!

Dr. G.K. Prajapati LNJPIT, Chapra Homogeneous Linear Partial Differential ...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶