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Introduction

Short Method to find the Particular Integral

Short Method-II (When right hand side function is of the
form φ(xmyn) i.e. F (D,D′) = φ(xmyn)), where m and n are
either integer or rational number.
Let F (D,D′) = φ(xmyn) be homogeneous function of D and
D′ of order n. Then the particular integral is defined as

1

F (D,D′)
φ(xmyn),

Then particular integral evaluated by expanding the symbolic

function
1

F (D,D′)
in an infinite series of ascending power of D

or D′.
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Remark-1: If n ≤ m, then
1

F (D,D′)
should be expanded in

powers of
D′

D
whereas If m ≤ n, then

1

F (D,D′)
should be

expanded in powers of
D

D′
.

Remark-2: Binomial expansion

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + ...
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Example

Solve (D2 − a2D′2)z = x.

Solution: The auxiliary equation is m2 − a2 = 0, which gives
m = −a,+a. Therefore it’s complementary function (C.F.) is

C.F. = f1(y − ax) + f2(y + ax), where f1, f2 are arbitrary
function.
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Now, Particular Integral (P.I.) will be

P.I. =
1

F (D,D′)
φ(xmyn) =

1

D2 − a2D′2
(x)

=
1

D2

[
1−

(
a2D′2

D2

)](x)
=

1

D2

[
1−

(
a2D′2

D2

)]−1
(x)

=
1

D2

[
1 +

(
a2D′2

D2

)
+

(
a2D′2

D2

)2

+ ...+

]
(x)

=
1

D2

[
1 +

(
a2D′2

D2

)
+

(
a4D′4

D4

)
+ ...+

]
(x).
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=
1

D2

[
x+

(
a2D′2

D2

)
x+

(
a4D′4

D4

)
x+ ...+

]
=

1

D2

[
x+

(
a2

D2

)
(D′2x) +

(
a4

D4

)
(D′4x) + ...+

]
=

1

D2
(x)

P.I. =
x3

6
.

Therefore the required general solution is z = C.F.+ P.I.i.e.

z = f1(y − ax) + f2(y + ax) +
x3

6
.
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Example

Solve (D3 −D′3)z = x3y3.

Solution: The auxiliary equation is m3 − 1 = 0, which gives
m = 1, ω, ω2, where ω and ω2 are cube root of unity.
Therefore it’s complementary function (C.F.) is

C.F. = f1(y + x) + f2(y + ωx) + f3(y + ω2x), where f1, f2, f3
are arbitrary function.
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Now, Particular Integral (P.I.) will be

P.I. =
1

F (D,D′)
φ(xmyn) =

1

D3 −D′3
(x3y3)

=
1

D3

[
1−

(
D′3

D3

)](x3y3)
=

1

D3

[
1−

(
D′3

D3

)]−1
(x3y3)

=
1

D3

[
1 +

(
D′3

D3

)
+

(
D′3

D3

)2

+

(
D′3

D3

)3

+ ...+

]
(x3y3).
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=
1

D3

[
1 +

(
D′3

D3

)
+

(
D′6

D6

)
+

(
D′9

D9

)
+ ...+

]
(x3y3)

=
1

D3

[
(x3y3) +

(
D′3

D3

)
(x3y3) +

(
D′6

D6

)
(x3y3) + ...+

]
=

1

D3

[
(x3y3) +

(
1

D3

)
(D′3(x3y3)) +

(
1

D6

)
(D′6(x3y3)) + ...+

]
=

1

D3

[
(x3y3) +

(
1

D3

)
(x3D′3(y3)) +

(
1

D6

)
(x3D′6(y3)) + ...+

]
=

1

D3

[
(x3y3) +

(
1

D3

)
(x3(3.2.1)) +

(
1

D6

)
(x3(0)) + ...+

]
.
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=
1

D3

[
x3y3 + 6

(
1

D3

)
(x3)

]
=

1

D3
(x3y3) + 6

(
1

D6

)
(x3)

= y3
1

D3
(x3) + 6

(
1

D6

)
(x3)

P.I. = y3
x6

120
+

x9

10080
.

Therefore the required general solution is z = C.F.+ P.I.i.e.

z = f1(y + x) + f2(y + ωx) + f3(y + ω2x) +
x6y3

120
+

x9

10080
.
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Solve the following PDE:

(1) (D2 − 6DD′ + 9D′2)z = 12x2 + 36xy Ans.
z = f1(y + 3x) + xf2(y + 3x) + 10x4 + 6x3y

(2) (D2 − 2DD′ +D′2)z = ex+2y + x3 Ans.

z = f1(y + x) + xf2(y + x) + e(x+ 2y) +
x5

20
(3) (D3 − 7DD′2 − 6D′3)z = x2 + xy2 + y3
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