DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

LOKNAYAK JAI PRAKASH INSTITUTE OF TECHNOLOGY CHAPRA, BIHAR

Subject: Operating Systems Assignment- 2 Subject Code: CS 1403

- 1. Define Deadlock. List four necessary conditions for occurrence of Deadlock. How deadlock can be prevented?
- 2. Elaborate upon the conditions necessary for a deadlock situation to arise.
- **3.** A system contains 6 units of Resource and n processes that uses the resources. What is maximum value of n for which the system will be deadlock free if the maximum requirement of each process is 3.
- 4. Explain Bankers Algorithm. Considering a system with five processes P_0 through P_4 and three resources of

type A, B, C. Resource type A has 10 instances, B has 5 instances and type C has 7 instances. Suppose at time t₀ following snapshot of the system has been taken:

Process	Allocation	Max	Available		
	ABC	ABC	ABC		
Po	010	753	332		
P ₁	200	322			
P ₂	302	902			
P3	2 1 1	222			
P ₄	0 0 2	4 3 3			

5.

- a. What will be the content of the Need matrix?.
- b. Is the system in a safe state? If Yes, then what is the safe sequence?
- c. What will happen if process P₁ requests one additional instance of resource type A and two instances of resource type C?
- 6. Discuss various Mechanisms for Deadlock Recovery.
- 7. Explain the usage of Resource Allocation Graph for Deadlock Avoidance.
- 8. Write the steps of Bankers Algorithm and Bankers Safety Algorithm with Examples.
- A system has 4 processes and 5 allocatable resources. The current allocation and maximum needs are as follows-

	Allocated					Maximum				
Α	1	0	2	1	1	1	1	2	1	3
В	2	0	1	1	0	2	2	2	1	0
С	1	1	0	1	1	2	1	3	1	1
D	1	1	1	1	0	1	1	2	2	0

If Available = [00X11], what is the smallest value of x for which this is a safe state?