Function

-

b

-

-

-

-

What is C function?
Uses of C functions

Types of C functions

Library functions in C
User defined functions in C

- Creating/Adding user defined function in C library
C function declaration, function call and
definition with example program

How to call C
Call by value

functions in a program?

Call by reference
C function arguments and return values

C function wit
C function wit

n arguments and with return value
n arguments and without return value
nout arguments and without return value

ithout arguments and with return value

1. What is C function?

» Alarge C program is divided into basic
building blocks called C function.

» C function contains set of instructions

enclosed by “{ }" which performs specific
operation in a C program.

» Actually, Collection of these functions creates
a C program.

2.Uses of C functions:

C functions are used to avoid rewriting same logic/code
again and again in a program.

There is no limit in calling C functions to make use of
same functionality wherever required.

We can call functions any number of times in a program
and from any place in a program.

A large C program can easily be tracked when it is
divided into functions.

The core concept of C functions are, re-usability,
dividing a big task into small pieces to achieve the
functionality and to improve understandability of very

3.Types of functions

» C functions can be classified into two
categories
o Library functions
- User-defined functions

L1
i

LIBRARY FUNCTIONS

- Library functions are not required to be written by
us

- printf and scanf belong to the category of library
function

Examples:

Printf(),scanf(),Sqrt(), cos(), strcat(,rand(), etc are
some of library functions

» Consider the following example.
#include <stdio.h>
#include <math.h>
main() £

{

main() calls 3 built-in functions:
e .-.-.-_:;:-.--'-r..--'.----'-;l_r-'.:-.l"-.--!:-. "':- o !H-.-!-j*--

float x,y;
scanf("%f", &x):

y=sqrt(x);
printf("Square root of %f is %f\n", x,y);

}

g

NEED FOR USER-DEFINED FUNCTIONS

»

w

Every program must have a main function

It is possible to code any program utilizing only main
function, it leads to a number of problems

The program may become too large and complex and as a
result the task of debugging, testing, and maintaining
becomes difficult

If a program is divided into functional parts, then each part
may be independently coded and later combined into a single
unit

These subprograms called ‘functions’ are much easier to
understand, debug, and test

NEED FOR USER-DEFINED FUNCTIONS

» There are times when some types of operation or

calculation is repeated at many points throughout a

program

» In such situations, we may repeat the program

statements whenever they are needed

» Another approach is to design a function that can

be called and used whenever required

» This saves both time and space

ELEMENTS OF USER-DEFINED FUNCTIONS

» Function declaration or prototype - informs compiler about
the function name, function parameters and return value’s
data type.

» Function call - This calls the actual function

» Function definition - This contains all the statements to be

executed.
o e |
1 Function definition return_type function_name(arguments list)
{ Body of function; }
2 function call function_name (arguments list),
3 function declaration return_type function_name (argument list

),

ELEMENTS OF USER-DEFINED FUNCTIONS

» Functions are classified as one of the derived data
types in C

» Can define functions and use them like any other
variables in C programs.

» Similarities between functions and variables in C

Both function name and variable names are
considered identifiers and therefore they must adhere
to the rules for identifiers.

Like variables, functions have types (such as int)
associated with them

Like variables, function names and their types must

be declared and defined before they are used in a
program

ELEMENTS OF USER-DEFINED FUNCTIONS

» There are three elements related to functions

Function definition
Function call
Function declaration

» The function definition is an independent program
module that is specially written to implement the
requirements of the function

» To use this function we need to invoke it at a required
place in the program. This is known as the function call.

» The program that calls the function is referred to as the
calling program or calling function.

» The calling program should declare any function that is

to be used later in the program. This is known as the

function declaration or function prototype.

FUNCTION

main() data_type funcl()

Calling function Called function

g

DEFINITION OF FUNCTIONS

» A function definition, also known as function implementation
shall include the following elements;

Function name,

Function type; ~Function header

List of parameters;

Local variable declaration;

Function statements; and - Function body

A return statement. N
+ All six elements are grouped into two parts, namely,

Function header (First three elements); and
Function body (Second three elements)

THE FORM OF C FUNCTION

return_type function_name(parameter list)
{

local variable declaration:;

executable statement];

executable statement?2;

return(expression);

}

» The first line function_type function_name(parameter list) is
known as the function header.

» The statements within the opening and the closing brace
constitute the function body.

FUNCTION DEFINITION

+ Function Header
The function header consists of three parts: the function type (also
known as return type), the function name and formal parameter list.
Semicolon is not used at the end of the function header

+ Name and Type
The function type specifies the type of value (like float or double) that
the function id expected to return to the program calling the function

If the return type is not explicitly specified, C assume it as an integer

type.

If the function is not returning anything then we need to specify the
return type as void

The function name is any valid C identifier and therefore ,just follow the

same rules of formation as other variable names in C

FORMAL PARAMETER LIST

+ The parameter list declares the variables that will receive the data sent
by the calling program.

» They serve as input data to the function to carry out the specified task.

v They represent actual input values, they are often referred to as formal
parameters.

» These parameters can also be used to send values to the calling

programs
+ The parameter is known as arguments.
float quadratic (inta, int b, int¢){ }
double power (double x, intn){ }

int sum(inta,intb){.....}

+ There is no semicolon after the closing parenthesis

e declaration parameter variables cannot be combined

FORMAL PARAMETER LIST

» To indicate that the parameter list is empty, we
use the keyword void between the parentheses as
N

void printline (void)

{

}...

» Many compiler accept an empty set of parentheses
void printline()

» It is good to use void to indicate a nill parameter
list

FUNCTION BODY

» The function body contains the declarations and
statements necessary for performing the required
task. The body enclosed in braces, contains three
parts,

Local declarations that specify the variables needed by the
function

Function statements that perform the task of the function

A return statement that returns the value evaluated by the
function

» If a function does not return any value, we can omit
the return statement.

v Its return type should be specified as void

RETURN VALUES AND THEIR TYPES

w

A function may or may not send back any value to the calling
function

+ Done through return statement

» Itis possible to send any number of values to the called function
» The called function can only return one value per call

v SYNTAX:

return,

or

return (expression);

-y

4. How to call C functions in a program?

» There are two ways that a C function can be called from a
program. They are,
Call by value
Call by reference

1. Call by value:

In call by value method, the value of the variable is passed to the
function as parameter.

The value of the actual parameter can not be modified by formal
parameter.

Different Memory is allocated for both actual and formal
parameters. Because, value of actual parameter is copied to
formal parameter.
v Note:
Actual parameter - This is the argument which is used in
function call.
Formal parameter - This is the argument which is used in
Qg definition

.'II II|ll. b 3!
-.'|l| "I"'-I':I' L

AR

LRELRLES

LY

Example program for C function (using call by value):
v #include<stdio.h=

vold swap(int a, int b); i Tunction prototyvpe, also called function declaration
int main()

{
intm=22 n=44;
printf(" values before swap m = %d \nand n = %d", m, n);
swap(m, n); /I calling swap function by value

}

vold swap(int a, int b)

{ Output
int tmp; ,
T values before swap m =22 and n =44
= values after swapm=44 and n =22
a=b
b = tmp:

printf(" \nvalues after swap m = %d\n and n = %d", a, b):

2. Call by reference:

» In call by reference method, the address of the variable 1is
passed to the function as parameter.

» The value of the actual parameter can be modified by formal
parameter.

» Same memory is used for both actual and formal parameters
since only address is used by both parameters.

Example program for call by referrence

#include<stdio.h>
vold swap(int *a, int *b); // function prototype, also called function declaration

int main()
{
mtm= 22, n=44;
// calling swap function by reference
printf("values before swap m = %d \n and n = %d",m.n);

swap(&m, &n);
I
: . : Output
vold swap(int *a, int *b)
{ values before swap m =22 and n =44
int tmp; values after swap m =44 and n = 22
tmp = *a;
*3 = *h:
*b = tmp;

printf("\n values after swap a = %d ‘\nand b = %d", *a, *b);

CATEGORY OF FUNCTIONS

v C function with arguments (parameters) and with return value
v C function with arguments (parameters) and without return value
» C function without arguments (parameters) and without retum value

v C function without arguments (parameters) and with return value
C function

1 with arguments and with it Pumvetion | int); A Tunction declaration
return values Tunction (a); A function call
inl functionl inta) N fonction definition
{stalements; relurn a;}

2 with arguments and withowt void Monction (int); # function declaration
return values function(a); # function call
void functiond int a)/ Tunction definition
{stalements; }
3 without arguments and without void Tunction(); N Tunection declaration
return values Tunction(); A Tunction call
void Tunction() A Tunction definition
{slatements; }
4 withoul arguments and with int Tunction (); # Tunction declaration
return values function (); A function call

imt Function) A Tunction definition
{stalements; relurn ag}

