COMPILER DESIGN

Motivation

ny we study Compiler Design?
nat Is the importance of Compiler?

nat Is the objective of this course?

Reasons:

Compilers provide an essential interface
between applications and architectures.

Compilers embody a wide range of theoretical
techniques.

Compiler construction teaches programming
and software engineering skills.

It teaches you how real world applications are
designed.

It brings you closer to the language to exploit
It.

Reasons:

Compiler (a sophisticated program) bridges a
gap between the language chosen & a
computer architecture.

Compiler improves software productivity by
hiding low level details while delivering
performance.

Compiler provides techniques for developing
other programming tools, like error detection
tools.

Program translation can be used to solve
other problems, like Binary translation

Isn’t it a solved problem?

* Machines have continued to change since
they have been invented.

Changes in Architecture-> Changes in Compilers
* New features present new problems

* Changing costs lead to different concerns
* Must re-engineer well known solutions

Compiler construction shows us a microcosmic view

of computer science.

artificial | greedy algorithms

intelligence || learning algorithms

graph algorithms
algorithms || union-find
network flows

dynamic programming

? -
dfa’s for scanning
theory | parser generators

lattice theory for analysis

allocation and naming
systems || locality

synchronization

pipeline management

architecture | memory hierarchy management
instruction set use

Inside a compiler, all these things come together.

What qualities do yvou want in a compiler?

Here 1is a list:

0 ~ O U = W N

-
-)

. Correct code

. OQutput runs fast

. Compiler runs fast

. Compile time proportional to program size
. Support for separate compilation

. Good diagnostics for syntax errors

. Works well with the debugger

. Good diagnostics for low anomalies

. Cross language calls

. Consistent, predictable optimization

Program Execution

« Execution of a program written in HLL Is
basically a 2-step process

1. The source program is compiled first I.e.
translated into the object program.

2. The resulting object program is loaded Into
memory and executed.

C Program

Compiling

Compiler

Binary
Code

User

Executing

User

Translator (computing)

« A translator or programming language
processor IS a computer program that
performs the translation of a program written
In a given programming language Into
a functionally equivalent program in another
computer language (the target language),
without losing the functional or logical
structure of the original code (the "essence"
of each program).

Translators

o Compilers, Interpreters and Assemblers are all
software programming tools that convert code
Into another type of code, but each term has
specific meaning.

o All of the above work in some way towards
getting a high-level programming language
translated into machine code that the central
processing unit (CPU) can understand.

e It’s important to note that all translators,
compilers, interpreters and assemblers are
programs themselves.

Code Translation

Compllers

Compilers convert high-level language code to machine
(object) code In one session.

Compilers will report errors after compiling has finished.

Compilers can take a while, because they have to translate
high-level code to lower-level machine language all at once
and then save the executable object code to memory.

A compiler creates machine code that runs on a processor
with a specific Instruction Set Architecture (ISA), which is
processor-dependent.

Compilers are also platform-dependent.

A cross-compiler, however, can generate code for a
platform other than the one it runs on itself.

Choosing a compiler , means that first you need to know
the ISA, operating system, and the programming language
that you plan to use.

What actually a compiler is?

A compiler is a computer program that translates a
computer program written in one computer language
(called the source language) into an equivalent
program written in another computer language
(called the output, object, or target language).

object/ target
language

Source |ﬂngUﬂ9'E’-_,cumpiler —

(A comp.
program)

Translation from source to object

Source Program
>

Target Program
>

Error Messages

Interpreters

« Another way to get code to run on your processor
IS to use an interpreter, which is not the same as
a compiler.

* An interpreter translates code like a compiler but
reads the code and immediately executes on that
code, and therefore is initially faster than a
compiler.

e Thus, Interpreters are often used in software
development tools as debugging tools, as they
can execute a single in of code at a time.

Compiler v/s Interpreter

Compilers translate code all at once and the processor
then executes upon the machine language that the
compiler produced. If changes are made to the code
after compilation, the changed code will need to be
compiled and added to the compiled code (or perhaps
the entire program will need to be re-compiled.)

But an interpreter, although skipping the step of
compilation of the entire program to start, is much
slower to execute than the same program that’s been
completely compiled.

Interpreters, however, have usefulness in areas where
speed doesn’t matter (e.g., debugging and training)

Compiler v/s Interpreter

e Compilers often come as a package with other
tools, and each processor manufacturer will have
at least one compiler or a package of software
development tools (that includes a compiler).

e There are several types of interpreters: the
syntax-directed interpreter (i.e., the Abstract
Syntax Tree (AST) interpreter), bytecode
Interpreter, and threaded interpreter Just-in-Time
(arl]qnd of hybrid interpreter/compiler), and a few
others.

e Some examples of programming languages that
use interpreters are Python, Ruby, Perl, and PHP.

Compiler v/s Interpreter

An interpreter, like a compiler, translates high-level
language into low-level machine language. The difference
lies in the way they read the source code or input.

A compiler reads the whole source code at once, creates
tokens, checks semantics, generates intermediate code,
executes the whole program and may involve many passes.

In contrast, an interpreter reads a statement from the
Input, converts it to an intermediate code, executes it, then
takes the next statement in sequence.

If an error occurs, an interpreter stops execution and
reports it.

whereas a compiler reads the whole program even if it
encounters several errors.

Cousins of Compilers

® Preprocessors

e Assemblers
Compiler may produce assembly code instead of
generating relocatable machine code directly.

® Loaders and Linkers

Loader copies code and data into memory, allocates
storage, setting protection bits, mapping virtual
addresses, .. Etc

Linker handles relocation and resolves symbol
references.

® Debugger

Compiler Construction 25

Assemblers

* Anassembler translates a program written in assembly
language into machine language and is effectively a
compiler for the assembly language.

e Assembly language is a low-level programming language.
An assembler converts assembly language code into
machine code (also known as object code), an even lower-
level language that the processor can directly understand.

e Assembly language is the next level up from machine code,
and Is quite useful in extreme cases of debugging code to
determine exactly what’s going on in a problematic
execution. For instance, Sometimes compilers will

“optimize” code In unforeseen ways that affect outcomes
such that it’s necessary to carefully follow the step-by-step
action of the processor in assembly code,

sOou I'('..‘r(?'1 program

Preprocessor Expands macros

)

modified source program
)

C°"'Ip"er A LANGUAGE
target asseIany program gsg%EI\?SING
Assembler
relocatablelmachine code
l library files

Linker/Loader———

'
target machine code

relocatable object files

A preprocessor, generally considered as a part of
compiler, is a tool that produces input for
compilers. It deals with macro-processing(macro
expansion), file inclusion, etc.

A compiler is a program that converts high-level
language to assembly language.

An assembler translates assembly language
programs into machine code.

The output of an assembler is called an object
file, which contains a combination of machine
Instructions as well as the data required to place
these instructions in memory(relocatable).

 Linker is a computer program that links and
merges various object files together in order to
make an executable file. All these files might have
been compiled by separate assemblers. The
major task of a linker is to search and locate
referenced module/routines in a program and to
determine the memory location where these
codes will be loaded, making the program
instruction to have absolute references.

e Loader Is a part of operating system and is
responsible for loading executable files into
memory and execute them. It calculates the size
of a program (instructions and data) and creates
memory space(absolute) for it. It initializes
various registers to initiate execution.

S LN 2 S LTS 2
File File
b ecs Cbject Cbject _bject
File File File File
4 i
Huatime — I | Linkear — = Executable

Lib=ry

Freomm

Source Code -
g

Pre Processor

Pre-processed . -
Code .. l
Compiler
Target . ..
Assembly Code
Assembler
Relocatable é
Machine Code -
= —» Library files/
Linker Relccatable
“— modules
Executable . .-
Machine Code
Loader

l

Memory

A detalled look
at the
Internals of a compiler

__.—"- = Syntax Analyzer e -"-.__

Symbol b Intermediate Code Error

Table SGanerator | Handler

-"~._:"~.__ e mMachine Independent - _.-"':__-"".
i T Code Optimiser - &
"-._ R Code Generator = __,"_

~ Machine Dependent

=

OCAOTOT IO
TOOEOO I Ea
TeooT o0
OETaTIIEhET o
B e A TN -E]
L e PR T S TR T
DoOOa1IOEIEEa
1o 0O s0t0

Target Code

Phases of Compiler

* The compilation process Is a sequence of
various phases. Each phase takes input from
Its previous stage, has its own representation
of source program, and feeds Its output to the

next phase of the compiler. Let us understand
the phases of a compiler.

symbol

table
manager

Phases of Compiler

lexical analyzer

v

syntax analyzer

v

\

semantic analyzer

error

v

intermedfate code
generator

handler

v

code optimizer

v

code generator

Lexical Analysis (Scanner)

* The first phase of scanner works as a text
scanner. This phase scans the source code as a
stream of characters and converts it into
meaningful lexemes. Lexical analyzer

represents these lexemes in the form of
tokens as:

<token-name, attribute-value>

Lexical Analysis

o LA can be generated automatically from regular expression
specifications

o LEX and Flex are two such tools

o LA is a deterministic finite state automaton

@ Why is LA separate from parsing?

o Simplification of design - software engineering reason

o 1/O issues are limited LA alone

o LA based on finite automata are more efficient to implement
than pushdown automata used for parsing (due to stack)

Translation Overview - Lexical Analysis

fahrenheit = centigrade * 1.8 + 32

l

Lexical Analyzer

l

<id,1> <assign> <id,2> <multop>
<fconst, 1.8> <addop> <iconst,32>

l

Syntax Analyzer

Why LA is called Scanner?

It Is also called as scanner because in this phase the
complete source code is scanned and a source program
IS broken into groups of (strings) sequence of
characters. These groups are called Tokens.

It reads the source program one character at a time.

Each token represents a sequence of characters that
can be treated as a single logical entity called Lexemes.

e.g. const pi = 3.14 (Here pi is a lexeme for token id)

A token describes a sequence of characters having
some meaning in the source program.

Tokens can be: Identifiers, keywords, operators,
punctuation symbols, constants

Tasks performed by LA:

 Eliminates the comments & white spaces

« Correlates error messages with the source
program

e Replacing lexemes by tokens
l.e. Generate token stream

Token — example 1

e Input text
if(x>=y)y=10;

e Token Stream

Syntax Analysis
(Hierarchical Analysis)

* The next phase Is called the syntax analysis
or parsing. It takes the token produced by
lexical analysis as Input and generates a parse
tree (or syntax tree). In this phase, token
arrangements are checked against the source
code grammair, 1.e. the parser checks if the
expression made by the tokens Is syntactically
correct.

The Parser has two functions:

1. It checks that the token appearing in its input
occurs In a pattern permitted by the
specification of the source language.

2. It make explicitly the hierarchical structure of
the incoming token stream.(Parse tree or
syntax tree)

Translation Overview - Syntax Analysis

<id,1> <assign> <id,2> <multop>
<fconst, 1.8> <addop> <iconst,32>

l

Syntax Analyzer

Semantic Analyzer

Parsing(Syntax Analysis)

@ Syntax analyzers (parsers) can be generated automatically
from several variants of context-free grammar
specifications

o LL(1), and LALR(1) are the most popular ones
o ANTLR (for LL(1)), YACC and Bison (for LALR(1)) are such
tools

@ Parsers are deterministic push-down automata

@ Parsers cannot handle context-sensitive features of
programming languages; e.g.,
o Variables are declared before use

o [ypes match on both sides of assignments
o Parameter types and number match in declaration and use

Semantic Analysis

« Semantic analysis checks whether the parse tree
constructed follows the rules of language.

* For example, assignment of values is between

compatible data types, and adding string to an
integer.

 Also, the semantic analyzer keeps track of
identifiers, their types and expressions; whether
Identifiers are declared before use or not etc. The

semantic analyzer produces an annotated syntax
tree as an output.

Translation Overview - Semantic

Analysis
syntax tree l
(=
P ’“*) Semantic Analyzer
(id) fk"‘) l
f,a-f
\"EU ﬁ‘:@ “‘fdjj (;.
/ -
*l mtnflnat)
Eidz 1.8 .8 (32)

l

Int.Code Generator

Semantic Analysis

@ Semantic consistency that cannot be handled at the
parsing stage is handled here

@ Iype checking of various programming language
constructs is one of the most important tasks

@ Stores type information in the symbol table or the syntax
tree

o lypes of variables, function parameters, array dimensions,
etc.

e Used not only for semantic validation but also for
subsequent phases of compilation

@ Static semantics of programming languages can be
specified using attribute grammars

Intermediate Code Generation

o After semantic analysis the compiler
generates an intermediate code of the source
code for the target machine.

 Itisin between the high-level language and
the machine language.

* This intermediate code should be generated In
such a way that it makes it easier to be
translated into the target machine code.

Translation Overview - Intermediate

Int.Code Generator
|

t1=id2*1.8

t2 = intofloat(32)
3=t1+12

id1 =13

I
¥

Code Optimizer

Intermediate Code Generation

0 By converting source code to an intermediate code, a

t*anslate 10

o Asort
0 Should
18qiste

of Unive

mach

maching-Independer
0 Infermediate cooe m

16

5d

10t CO

S, ado

tl

code
3596

ay

€565, €

tcode optimizer may be writen
Jst be easy to produce and easy to

mbly language
machine-specific parameters

c)

Different Types of Intermediate Code

0T
g

o Quadrup

d
0

B
ot

1€ C

e fype of intermediate code deployed is based on the
nplication

es, triples, indirect triples, abstract syntax trees

assical for

ms used for machi

Nizations and machine code gene

atlo

le-ndependent

l

Code Optimization

* The next phase does code optimization of the
Intermediate code. Optimization can be
assumed as something that removes
unnecessary code lines, and arranges the
sequence of statements in order to speed up
the program execution without wasting
resources (CPU, memory).

Translation Overview- Code
Optimization

t=id2*1.8
£2 = intofloat(32)
3=t +12

id1 =13

l

‘ Code Optimizer

l

t1=id2*1.8
id1 =t1+32.0

l

‘ Code Generator ‘

Machine Independent Code
Optimization

@ Intermediate code generation process introduces many
inefficiencies

o Extra copies of variables, using variables instead of
constants, repeated evaluation of expressions, efc.

@ Code optimization removes such inefficiencies ano
Improves code

o Improvement may be time, space, or power consumption

Examples of Machine Independent
Optimization

@ Common sub-expression elimination
@ Copy propagation

@ Loop invariant code motion

@ Partial redundancy elimination

@ Induction variable elimination and strength reduction

@ Code opimization needs information about the program

e Which expressions are being recomputed in a function?
e which definitions reach a point?

@ All such information is gathered through data-flow analysis

Code Generation

* |n this phase, the code generator takes the
optimized representation of the intermediate
code and maps it to the target machine language.

* The code generator translates the intermediate
code into a sequence of (generally) re-locatable
machine code. Sequence of instructions of
machine code performs the task as the
iIntermediate code would do.

Translation Overview- Code
Generation

t1=1d2* 1.8
id1 =11+ 32.0

l

Code Generator ‘

!

LDF R2, id2
MULF R2, R2, 1.8
ADDF R2, R2, 32.0

STF id1, R2

Code Generation (Machine
Dependent)

0 Converts Intermediate coce to machine code

0 Each intermediate code Instruction may result in many
maching Instructions or vice-cersa

0 Must handle all aspects of machine architecture

Symbol Table

e |tIs a data-structure maintained throughout
all the phases of a compiler. All the identifier's
names along with their types are stored here.
The symbol table makes it easier for the
compiler to quickly search the identifier
record and retrieve It. The symbol table is also
used for scope management.

Error Handler

e Each phase can encounter error. However
after detecting an error, a phase must
somehow deal with the error, so that the
compilation can proceed, allowing further
errors In the source program to be detected.

* The errors are reported In the form of
message.

[~

pesition

initiml

rata

SYMBOL

TABLE

position = jimitial + rate = G0

4
|__ Lexical Analveer |

v
(i, 1) (=} (id, 2} i*i-} i, 3} (=) (G0}

! Symtax Analyzer |

N
gy T
a2z e
{ﬁ"f 60
[Semantic Analyzer |
¥

ad, 1y N, ¥)
R .
(id,3f" inttofloat
i
50

= t
['HﬁtrnuuthﬂfLF?:Ej{}nn-rllur I

ti = inttofloat (60)
t2 = id3 » €1

td = id3 + €2

idl = &3

e |
N tlndntjpthmdnnr__'_‘_J

v
£l = id3 = &0.0
idl = id3 =+ ¢i
v
L__ E&Hﬁﬂi]ﬂ:lrllut |

LDF R2Z, tdﬂ

MULF R2, R2, #60.0
LDF R1l, id2

ADDF R1, R1, R2Z
5TF idl, R1

1.”position™ is a lexeme mapped into a token (id,
1), where id is an abstract symbol standin
for identifier and 1 points to the symbol table
entry for position. The symbol- table entry for
an 1dﬁnt1fl;§r holds information about the”

identifier, such as its name and type.

.= 15 a lexeme that 1s mapped into the token (=).
Since this token needs no attribute-value, we
have omitted the second component. For
notational convenience, the lexeme itself 1s
used as the name of the abstract symbol.

3. “initial” 15 a lexeme that 1s mapped into the

token (id, 2), where 2 points to the symbol-
table entry for initial.

I~

4. + 15 a lexeme that 15 mapped into the token (+).

5. “rate” is a lexeme mapped into the token (id,
3), where 3 points to the symbol-table entry
for rate.

6. * 1s a lexeme that is mapped into the token
("X

7. 60 15 a lexeme that 1s mapped into the token
(60)

Blanks separating the lexemes would be discarded
by the lexical analyzer.

token

Table

id 1

id 2

id 3

lexem

The Phases of a Compiler

Phase

Output

Sample

Programmer (source code producer)

Source string

L=B+C

Scanner (performs lexical analysis)

Token string

\AI, 1|.=.F, \BI, 1|.+.F, \CI, ‘L;.F
And symbol table with names

Parser (performs syntax analysis
based on the grammar of the

Parse tree or abstract syntax tree

r

programming language) F i
A +
i
B C
Semantic analyzer (type checking, Annotated parse tree or abstract
etc) syntax tree
Intermediate code generator Three-address code, quads, or int2fp B i |
RTL + tl C t2
P = t2 A
Optimizer Three-address code, quads, or int2fp B tl
RTL + tl #2.3 A
Code generator Assembly code MOVF #2.3,rl
ADDF2 rl,x2
MOVF 2,2

Peephole optimizer

Assembly code

ADDF2 #2.3,r2
MOVF r2,A

Compiler Architecture

e A compiler can broadly be divided into two
phases based on the way they compile.

Front-end Back-end

r Analysis | /| Synthesis ﬂ
Intermediate

Source Code Machine
Code Representation Code

Analysis Phase

* Known as the front-end of the compiller,
the analysis phase of the compiler reads the
source program, divides It into core parts and
then checks for lexical, grammar and syntax
errors. The analysis phase generates an
Intermediate representation of the source
program and symbol table, which should be
fed to the Synthesis phase as input.

Synthesis Phase

* Known as the back-end of the compiller,
the synthesis phase generates the target
program with the help of intermediate source
code representation and symbol table.

Analysis Synthesis
Analyze source program and build an Generate target program from

intermediate representation intermediate representation

Front End /Back End Model

Front end consists of those phases that depends
mainly on source language and are largely
iIndependent on the target machine.

So it normally includes lexical and syntax analysis
,creation of symbol table, semantic analysis and
generation of intermediate code.

A certain amount of code optimization can also
be done here.

It also includes error handling that goes along
with each of these phases.

Front End /Back End Model

 The Back end includes those portion of a
compiler that depends on the target machine.

* In this we find code optimization and code
generation phase along with necessary error
handling and symbol table operations.

Advantages: Front End /Back End
Model

» 1. By Keeping the same front end & attaching
different back ends, one can produce a
compiler for same source language on
different machines.

« 2. By keeping different front ends and same
backend, one can compile several different
languages on the same machine.

Passes of Compiler

* |nan implementation of a compiler, portions of
one or more phases are combined into a module
called as pass.

» A Pass reads the source program or output of
previous pass, makes the transformation and
write its output into an intermediate file, which
may then be read by a subsequent pass.

e Each pass communicate with other pass via
temporary file.

Passes of Compiler

* The structure of the source language and the
environment in which compiler operate, has a
strong effect on the number of passes.

e Based on which we have single pass compiler
and multi pass compiler.

Two pass compiler

source .

code

front
end

IR

back
end

______machine

code

a2

errors

* intermediate representation (IR)
* front end maps legal code into IR
* back end maps IR onto target machine

* simplify retargeting

* allows multiple front ends
* multiple passes = better code

Traditional Three-pass Compiler

Source Front
Code i End

Middle
End

Back
End

Machine

* Code Improvement (or Optimization)
* Analyzes IR and rewrites (or transforms) IR

code

= Errors

* Primary goal is to reduce running time of the compiled

code

 May also improve space, power consumption, ...

* Must preserve “meaning” of the code
= Measured by values of named variables

Advantage of Single-pass compilers

e One-pass compilers are smaller and faster
than multi-pass compilers.

e This Is In contrast to a multi-pass
compiler which converts the program into one
or more intermediate representations In steps
between source code and machine code, and
which reprocesses the entire compilation unit
In each sequential pass.

Advantage of Multi-pass compilers

* One-pass compilers are unable to generate as
efficient programs as multi-pass compilers due
to the limited scope of available information.

 Machine Independent: Since the multiple
passes include a modular structure, and the
code generation decoupled from the other
steps of the compiler, the passes can be
reused for different hardware/machines.

LEXICAL ANALYSIS
(Linear Analysis)

fokens

______ T TRy

S lexemes - Lexical Syntax

i Analyzer Analyzer

- S

request for tokens

Sour

1.Lexical analysis is the first phase of a compiler.

2.The lexical analyzer works closely with the syntax
analyzer. It reads character streams from the source code,
checks for legal tokens, and passes the data to the syntax
analyzer when it demands.

3.1 the lexical analyzer finds a token invalid, it generates an
error.

« Language: Computer languages are
considered as finite sets, and mathematically
set operations can be performed on them.

Finite languages can be described by means of
regular expressions.

* Regular Expressions : Regular expressions
nave the capability to express finite languages
oy defining a pattern for finite strings of
symbols. The grammar defined by regular
expressions Is known as regular grammar. The

language defined by regular grammar is
known as regular language.

Operations

Regular expression is an important notation for
specifying patterns. There are a number of algebraic
laws that are obeyed by regular expressions.

The various operations on languages are:

Union of two languages L and M Is written as
LUM={s|sisinLorsisin M}

Concatenation of two languages L and M Is written as
LM={st]|sisinLandtisin M}

The Kleene Closure of a language L is written as
L* = Zero or more occurrence of language L.

Notations

f rand s are regular expressions denoting the
anguages L(r) and L(s), then

Jnion : ()] (s) Is a regular expression denoting
_(r) U L(s)

Concatenation : (r)(s) Is a regular expression
denoting L(r)L(s)

Kleene closure : (r)* Is a regular expression
denoting (L(r))*

(r) Is a regular expression denoting L(r)

Precedence and Associativity

*, concatenation (.), and | (pipe sign) are left
assoclative

* has the highest precedence

Concatenation (.) has the second highest
precedence.

| (pipe sign) has the lowest precedence of all.

If X Is a regular expression, then:

e X* means zero or more occurrence of x.
l.e., It can generate { e, X, XX, XXX, XXXX, ... }

e X+ means one or more occurrence of x.
l.e., It can generate { X, XX, XXX, XXXX ... } Or X.X*

e X? means at most one occurrence of x
l.e., It can generate either {x} or {e}.

Finite Automata

 Finite automata is a recognizer for regular
expressions.

* \WWhen a regular expression string is fed into
finite automata, It changes its state for each
literal.

o If the Input string Is successfully processed
and the automata reaches its final state, It IS
accepted, I.e., the string just fed was said to
be a valid token of the language In hand.

The mathematical model of finite
automata consists of:

Finite set of states (Q)

Finite set of input symbols (2)
One Start state (g0)

Set of final states (qgf)
Transition function (0)

The transition function (6) maps the finite set
of state (Q) to a finite set of input symbols (2),

Qxz=Q

Longest Match Rule

When the lexical analyzer read the source-
code, It scans the code letter by letter; and
when It encounters a whitespace, operator
symbol, or special symbols, it decides that a

word Is completed.

For example:
Int intvalue;

While scanning both lexemes till “int’, the lexical
analyzer cannot determine whether it is a
keyword int or the initials of identifier int value.

The Longest Match Rule states that the lexeme
scanned should be determined based on the
longest match among all the tokens available.

The lexical analyzer also follows rule
priority where a reserved word, e.g., a keyword,
of a language Is given priority over user input.

That is, If the lexical analyzer finds a lexeme that
matches with any existing reserved word, it
should generate an error.

Lexical Analysis

" Block schematic of Lexical Analyzer
gt Hfer

| e
|

L-u::-:i!:al analyrer

Finitestate | | Finite autontata
muachine simiulatar

Pattems

2
Pattern mmhingi!ﬂ
L

ToKehs

Tokens are specified using Regular Expressions
and are recognized by Finite Automata.

R.E. Is a notation used to describe the Tokens.

F.A. Is a mechanism used to recognize these
tokens in the input stream.

Similarly CFG is particularly useful in
specifying the syntactic structure of a
language.

RegExpr 2 NFA =2 DFA

Topics
s Thompson Construction
m Subsetconstruction

Thompson's construction

e Thompson's construction iIs an algorithm for
transforming a regular expression into an
equivalent nondeterministic finite
automaton (NFA). This NFA can be used
to match strings against the regular
expression.

* Hence, this algorithm is of practical interest,

since It can compile regular expressions Into
NFAs.

The algorithm

The algorithm works recursively by splitting an
expression into Its constituent subexpressions,

from which the NFA will be constructed using
a set of rules.

Rules

* The empty-expression € is converted to

A symbol a of the input alphabet is converted to

Rules

N(s) and N(t) are the NFA of the sub expressions s and t, respectively.

* The union expression s|t is converted to

e State q goes via € either to the initial state of N(S) or N(t). Their final
states become intermediate states of the whole NFA and merge via
two e-transitions into the final state of the NFA.

Rules

N(s) and N(t) are the NFA of the sub expressions s and t, respectively.

The concatenation expression st is converted to

The initial state of N(s) Is the initial state of the
whole NFA.

The final state of N(s) becomes the initial state
of N(t).

The final state of N(t) is the final state of the
whole NFA.

Rules

* The Kleene star expression s* is converted to

e An e-transition connects initial and final state of the NFA
with the sub-NFA N(s) in between. Another e-transition
from the inner final to the inner initial state of N(s) allows
for repetition of expression s according to the star operator.

* The parenthesized expression (s) is converted to N(s) itself.

From Regular Expression to NFA
(Thompson’s Construction)

€

Hl‘:ll't)@ o)@

start
@20

30

Thompson’s Construction

NFA properties

]

Each NFA has a single start state and a single final state

The only transition that enters the initial state is the initial
transition

No transitions leave the final state

An empty transition always connects two states that were start or
final states of a component NFA

A state has at most two entering and two exiting empty
transitions

try to convince yourself that
these properties hold

From a Regular Expressionto an NFA
Thompson’s Construction

(a| b)* abb

€ e empty string match
consumes no input

24

Example :(e]|a*b)
using Thompson's construction

Subset Construction

Conversion of NFAs to DFAs

e To convert an NFA to a DFA we use a
concept of subset construction.

e Central to this we use the concept of the
closure.

» A major step of the subset construction is
to find the &-closure for each state.

e £-closure of a state s is the set of all states
reachable from zero or more £-transitions.

How to compute €-Closure

e The €-closure function takes a state and returns
the set of states reachable from it based on (one
or more) € -transitions.

* Note that this will always include the state itself.
We should be able to get from a state to any state
In its € -closure without consuming any input.

e The function move takes a state and a character,
and returns the set of states reachable
by one transition on this character.

The Subset Construction Algorithm

Create the start state of the DFA by taking the €-closure of
the start state of the NFA.

Perform the following for the new DFA state:
For each possible input symbol:

— Apply move to the newly-created state and the input symbol;
this will return a set of states.

— Apply the € -closure to this set of states, possibly resulting in a
new set.

This set of NFA states will be a single state in the DFA.

Each time we generate a new DFA state, we must apply
step 2 to it. The process is complete when applying step 2
does not yield any new states.

The finish states of the DFA are those which contain any of
the finish states of the NFA.

Minimization of DFA

Suppose thereisa DFA, D < Q, 5, q0, §, F > which recognizes a
language L. Then the minimized DFA, D < Q/, 5, g0, &, F' > can be
constructed for language L as:

Step 1: We will divide Q (set of states) into two sets. One set will
contain all final states and other set will contain non-final states.
This partition is called PO.

Step 2: Initialize k=1

Step 3: Find P, by partitioning the different sets of P, ;. In each set
of P,,, we will take all possible pair of states. If two states of a set
are distinguishable, we will split the sets into different sets in P,.
Step 4: Stop when P, = P, ; (No change in partition)

Step 5: All states of one set are merged into one. No. of states in
minimized DFA will be equal to no. of sets in P,.

Input Buffering in Compiler Design

e To ensure that a right lexeme Is found, one or
more characters have to be looked up beyond
the next lexeme.

e Hence a two-buffer scheme Is introduced to
handle large look aheads safely.

 Techniques for speeding up the process of
lexical analyzer such as the use of sentinels to
mark the buffer end have been adopted.

There are three general approaches for the
Implementation of a lexical analyzer:

(1) By using a lexical-analyzer generator, such as lex
compiler to produce the lexical analyzer from a regular
expression based specification. In this, the generator
provides routines for reading and buffering the input.

* (i) By writing the lexical analyzer in a conventional
systems-programming language, using 1/0O facilities of
that language to read the input.

o (iil) By writing the lexical analyzer in assembly language
and explicitly managing the reading of input.

Input Buffering in Compiler Design

« Because of large amount of time consumption
INn moving characters, specialized buffering
techniques have been developed to reduce
the amount of overhead required to process
an input character.

 Fig shows the buffer pairs which are used to
hold the input data.

E 1 (& M et e

p— i F?

meemelegn fennard

Scheme

Consists of two buffers, each consists of N-character size
which are reloaded alternatively.

N-Number of characters on one disk block, e.g., 4096.

N characters are read from the input file to the buffer using
one system read command.

eof Is Inserted at the end if the number of characters is less
than N.

Pointers

Two pointers lexemeBegin and forward are maintained.

lexeme Begin points to the beginning of the current lexeme
which is yet to be found.

forward scans ahead until a match for a pattern is found.

Once a lexeme Is found, lexemebegin Is set to the character
immediately after the lexeme which is just found
and forward Is set to the character at its right end.

Current lexeme Is the set of characters between two
pointers.

Disadvantages of this scheme

e This scheme works well most of the time, but the
amount of lookahead is limited.

 This limited lookahead may make it impossible to
recognize tokens in situations where the distance
that the forward pointer must travel is more than
the length of the buffer.

(e.g.) DECLARE (ARGI, ARG2, . . ., ARGn) in PL/1
orogram;

* |t cannot determine whether the DECLARE Is a
keyword or an array name until the character that
follows the right parenthesis.

Sentinels

 |n the previous scheme, each time when the forward
pointer is moved, a check is done to ensure that one half of
the buffer has not moved off. If it is done, then the other
half must be reloaded.

* Therefore the ends of the buffer halves require two tests
for each advance of the forward pointer.

Test 1: For end of buffer.
Test 2: To determine what character is read.

 The usage of sentinel reduces the two tests to one by
extending each buffer half to hold a sentinel character at
the end.

 The sentinel is a special character that cannot be part of
the source program. (eof character is used as sentinel).

Advantages

E | ih’li' Enf‘[?;.“ " E'-jleufi | ‘ ‘ i .eu{.

. ¥

lexemeBegin forward

e Most of the time, It performs only one test to
see whether forward pointer points to an eof.

e Only when it reaches the end of the buffer half
or eof, it performs more tests.

« Since N input characters are encountered
between eofs, the average number of tests per
Input character is very close to 1.

Syntactic Specification of a
Programming Language
CFG
Capabillities of CFG
Derivations
Parse Trees
Ambiguity
BNF Notation

Regular Expression limitation.....

* \We have seen that a lexical analyzer can
Identify tokens with the help of regular
expressions and pattern rules. But a lexical
analyzer cannot check the syntax of a given
sentence due to the limitations of the regular
expressions. Regular expressions cannot check
balancing tokens, such as parenthesis.
Therefore, CFG Is a helpful tool in describing
the syntax of programming languages.

Context-Free Grammar

* CFG iIs a superset of Regular Grammar, as
depicted below:

It implies that every Regular Grammar Is also
context-free

e CFG is a helpful tool in describing the syntax of
programming languages.

Context Free
Grammar

What are Context Free Grammars?

® In Formal Language Theory , a Context free Grammar(CFG)
is a formal grammar in which every pmductiun rule is of the

form

v

m] W
Where Vis a single nonterminal :-;)'mbnl and wis a string of

terminals and/or nonterminals (w can be empty)

® The languages generated b}r context free grammars are

knows as the context free languagﬂs

The capabilities of CFG :

Context free grammars are capable of describing most
of the syntax of programming language.

Suitable grammars for expressions can often be
constructed using associatively & precedence
iInformation.

So, context free grammar are most useful in describing
nested structures such as balanced parentheses,
matching begin-end's, corresponding if-then-else's &
so on. These nested structures cannot be described by
regular expression.

The following grammars the string, which serves the
language.

Reqular expressions

Finite automata

Token
Stream

T

I Context-free
Grammar

Derivation

« A derivation is basically a sequence of
production rules, in order to get the input
string.

 During parsing, we take two decisions for
some sentential form of input:

1.Deciding the non-terminal which is to be
replaced.

2.Deciding the production rule, by which, the
non-terminal will be replaced.

Derivation

To decide which non-terminal to be replaced with
production rule, we can have two options.

Left-most Derivation: If the sentential form of an
iInput is scanned and replaced from left to right, it
Is called left-most derivation. The sentential form
derived by the left-most derivation is called the
left-sentential form.

Right-most Derivation: If we scan and replace the
iInput with production rules, from right to left, it is
known as right-most derivation. The sentential
form derived from the right-most derivation Is
called the right-sentential form.

Example: Input string: id + id * id

e Production rules:
E—->E+E
E>E*E
E-id
 The left-most derivation Is:
E>E*E
E>E+E*E
E->Id+E*E
E>id+id*E
E—>id+id *id
Notice that the left-most side non-terminal is
always processed first.

Example: Input string: id + id * id

e Production rules:
E—->E+E
E>E*E

E-id

e The right-most derivation is:
E—->E+E

E>E+E*E

E>E+E*id

E>E+id *id

E—>id+id *id

Parse Tree

In a parse tree:

All leaf nodes are terminals.

All interior nodes are non-terminals.
In-order traversal gives original input string.

A parse tree depicts associativity and precedence
of operators.

The deepest sub-tree Is traversed first, therefore
the operator in that sub-tree gets precedence
over the operator which is in the parent nodes.

Parse Tree

o A parse tree is a graphical depiction of a
derivation.

 [tis convenient to see how strings are derived
from the start symbol.

* The start symbol of the derivation becomes
the root of the parse tree.

E->id+id *id
We take the left-most derivation of
at+tb*c

Ambiguity

« Agrammar G Is said to be ambiguous If it has
more than one parse tree (left or right
derivation) for at least one string.

Example: E—>E+E E->E-E E-id

e For the string, id + Id — Id, the above grammar
generates two parse trees:

AN N
/ANT T

id

]. : 1 3 Z

id

Ambiguity

* The language generated by an ambiguous
grammar Is said to be inherently ambiguous.
Ambiguity in grammar is not good for a
compiler construction. No method can detect
and remove ambiguity automatically, but It
can be removed by either re-writing the whole
grammar without ambiguity, or by setting and
following associativity and precedence
constraints.

Associativity

 If an operand has operators on both sides, the
side on which the operator takes this operand
Is decided by the associativity of those
operators. If the operation Is left-associative,
then the operand will be taken by the left
operator or If the operation Is right-
assoclative, the right operator will take the
operand.

Example

Operations such as Addition, Multiplication,
Subtraction, and Division are left associative.

If the expression contains: idopidopid
It will be evaluated as: (Idopid)opid
For example, (id +id) + 1d

Operations like Exponentiation are right
associlative, I.e., the order of evaluation in the
same expression will be:

Id op (1d op id)
For example, 1d ” (id ™ 1d)

Precedence

If two different operators share a common
operand, the precedence of operators decides
which will take the operand.

That Is, 2+3*4 can have two different parse
trees, one corresponding to (2+3)*4 and
another corresponding to 2+(3*4).

By setting precedence among operators, this
problem can be easily removed.

These methods decrease the chances of
ambiguity In a language or its grammat.

BNF Notation

* One of the earliest forms of notation used for
describing the syntax of a programming
language was Backus-Naur Form (BNF).

 This Is basically just a variant of a context-free
grammar, with the symbol ::=" used in place
of “->” to mean is defined as".

« Additionally, non-terminals are usually written
In angle-brackets and terminals in quotes.

For example, we could describe a block of
statements as:

<block> ::= BEGIN" <opt-stats> END".
<opt-stats> ::= <stats-list> | € .

<stats-list> ::= <statement >.

<stats-list> ::= < statement> ;" <stats-list> .

Compiler Construction Tools

These tools can be used to implement a compiller.

These tools have been created fot the automatic
design of specific compiler components.

These tools use specialized languages for
specifying & implementing the component.
These tools hide the details of generation
algorithm & produce components that can be

easily integrated into the remainder of a
compiler.

Compiler Construction Tools

e Some commonly used compiler-construction
tools include:

1. Parser generators.

2. Scanner generators.

3. Syntax-directed translation engines.
4. Automatic code generators.

5. Data-flow analysis engines.

6. Compliler-construction toolkits.

e Scanner Generators

Input: Regular expression description of the tokens of a
language
Output: Lexical analyzers.

Scanner generator generates lexical analyzers from a
regular expression description of the tokens of a language.

e Parser Generators:

Input: Grammatical description of a programming language
Output: Syntax analyzers.

Parser generator takes the grammatical description of a
programming language and produces a syntax analyzer.

o Syntax-directed Translation Engines

Input: Parse tree.
Output: Intermediate code.

Syntax-directed translation engines produce collections
of routines that walk a parse tree and generates
Intermediate code.

e Automatic Code Generators

Input: Intermediate language.
Output: Machine language.

Code-generator takes a collection of rules that define
the translation of each operation of the intermediate
language into the machine language for a target
machine.

« Data-flow Analysis Engines:

Data-flow analysis engine gathers
the Information, that Is, the values
transmitted from one part of a program to
each of the other parts. Data-flow analysis Is a
key part of code optimization.

o Compiler Construction Toolkits

The toolkits provide integrated set of routines
for various phases of compiler. Compiler
construction toolkits provide an integrated set
of routines for construction of phases of
compiler.

« A compiler for a programming language Is
often decomposed into two parts:

1. Read the source program & discover its
structure.

2. Process this structure

The task of discovering the source program
again 1s decomposed Into subtasks:

1. Split the source file into Tokens(LEX)

2. FInd the hierarchical structure of the
program(YACC)

LEX: A Lexical Analyzer Generator

Lex source Is a table of regular expressions and
corresponding program fragments.

The table Is translated to a program which reads an input
stream, copying It to an output stream and partitioning the
Input into strings which match the given expressions.

As each such string Is recognized, the corresponding
program fragment is executed.

The recognition of the expressions iIs performed by a
deterministic finite automaton generated by Lex.

The program fragments written by the user are executed in
the order in which the corresponding regular expressions
occur in the input stream.

FLEX: A Fast Scanner Generator

flex is a tool for generating scanners.

Programs which recognized lexical patterns in text, flex
reads the given input files, for a description of a
scanner to generate.

The description is in the form of pairs of regular
expressions and C code, called rules.

flex generates as output a C source file, lex.yy.c', which
defines a routine yylex()'.

This file is compiled and linked with the "-Ifl' library to
produce an executable.

When the executable Is run, it analyzes its input for
occurrences of the regular expressions. Whenever it
finds one, it executes the corresponding C code.

Lex source program format

* The Lex program has three sections, separated

by S0 %a:

declarations
el
transition rules

e
auxiliary oode

Transition rules

The transilation rufes of a Lex program are
statements of the form :

o1 faction 1}
¥y {achion 2§
X {achian 3}

where each p is a reqular expression and
each aclion is a program fragment
describing what action the lexical analyzer
should take when a string pattern matches
with o matches a lexeme.

In Lex the actions are written in C,

Lix
SMIrCE l.ex
—_— .
[FrOgram cormpiler
19X, 1 L.
18x G — C e
e compiler
inpul — AUt p—
shream

lex.yy.c

a.oug

seQuEnoe
of
tokens

Fig. 3.17. Creatimg a lexical =.r||.ll:r:':|=r with [.ex,

LE X
—— e el agedll ke mbecily desvicel oaglaeers
e Ipt usez Noxical /‘L&f\a«xag& C_'é Pattesnm D doon =z
Irypuce /Sbec'-ifca e - '
T when do- sbkecidicehon 1z givenn as ifle A= WEX- combile,
=S ngxmam as ©°ofp o C socuwnce dile, © iex-vj‘j.c)
— _)J-—’_D_/r\ AR EN i PEVETER as 81'\/% oz Yk e Hhe Ccombile
iN Produuce s o execudbakble dile Q- ol
NS Y. ¢ LW e ernccotablie Lsa R S £ a,r\a_!l»«-jw Ve

L_es— SbﬁCi%v'Ca:h'e‘r\ cong at= 94 Ao ee Rec—trrenL —

° '/J)eclaj’\a—ho g\ e D eclo~O- N ors Qj VO—'T\\abL.Q,& = iy spigian ?\%M
“e Ve d,odir\ itreng
- TE=ansgition Rulelk — Rules O e Ltocted
“o St i F — ooty O/r\‘
= ‘ 2 _eules Pottesn
R:L‘)CL[(O—?UUQ/ (. e e c
/o e g__'_r i O
Additiorel Psocediusres reeded 2mp tem entatzon

R - G S - .t . , oy
inctall _numCD R ' =

laLd‘_Q_va_/O__’ La%ie,r\gjlglj—t—e?ct cuone Hhe
voshiabler cuzed -
\d\ﬂb_vai—a pasz cn Okbteibute valiie caf -+ indosmmatio ne

cdgtefx,—é: —» Pointesnn == He dionnst chooracTe ~_ o7 ke Dexen e

YACC: Yet Another Compiler Compiler

Yacc provides a general tool for describing the
Input to a computer program.

The Yacc user specifies the structures of his input,
together with code to be invoked as each such
structure Is recognized.

Yacc turns such a specification into a subroutine
that handles the input process.

It Is convenient and appropriate to have most of
the flow of control in the user's application
handled by this subroutine.

Bison: The YACC-compatible Parser
Generator

* Bison Is a general-purpose parser generator
that converts a grammar description for an
LALR(1) context-free grammar intoa C
program to parse that grammar.

YACC Specifications

« Similar structure to LEX
— Oeclaration Section

— Translation Rules
— Supporting Cf0++ code

Cc s rokd oo
e
Frrmulebocnnzlas
'-E'.-_
SR Do T g 1000+ DDl

Translation Rules Section

= Each rule consists of a gammar production and
associated semantic action.

= «lpft side= 2 <altl= | <altz> | ... | <altne

wiould be written in YACT as

<left sida> - <altl> [semantic actionl}
| =alti= [semantic actiond

| <altri= [semantic action n}

Semantic Action is a sequence of C- Statements.

VACT
";.:'EILEE:—D‘ compiler i—» v, tab. ¢
specification

Q. parsery

*

¥.1ab. ¢ —* compiler

— 5. Oul

nput —= a.out —— output

\
e ;
R et Saerl

— ACToO g Yy

Aot e Coripi | ean Cornu i jlean

£oo et
T SveTHE T

e e w= = Moo L doaf\
aepecidrcahon

%mbog?na stzucCc
i~ given < & Gy e
"‘\

m\

e Sl PREE T
@ alE sbecidi(a'ﬁﬁ/

C Camtajhﬂma cn

—l:wwg_oj;L~ b7 | b ks

‘A~ e é_\\e.
A I ethod-

Co i et -’—UO-“’S&OM
: ld-:!:o,b- & L_.L&lf\ﬁ

C_C@nxbilen e €

.
g'zj c‘,cmb{\\v‘\% ‘-j-‘t.C)—b' = o T
obtaoarn e dj.&iw eb')e_c—t b—o’ba-ram - O el

(@B wske begﬂio—g—m/& A4~ -’»l’:“OMLQ:i—IOf\ = bec'-;f:‘e_o\ btj e

5
o %m'\gé“\ = ¢ i eE C b—o”oavam
: o =
age VF O Hreo bzroce_OLujue/& ooz e R 5 P e & T &
o .D_,OO_Q_Q—CJL o v _a‘ fenl- &

o Taerva LochHor RLules <
/s °Ya i

. Swppboaving . Tvowrues

. EmdmoITE. - e YTOT L= . = ey

Bootstrapping

In computer science, bootstrapping is the
technique for producing a self-compiling
compiler - that is, using the facilities offered by a
language to compile itself is the essence of
bootstrapping.

Even C compilers are written in C.

The chicken and egg problem: If one needs to
compile a compiler for language X (written in
language X), there is the issue of how the first
compiler can be compiled.

The T-diagram Is a notation used to explain the
compiler bootstrap technigues.

Bootstrapping ...

A compiler can be characterized by three languages: the
source language (5), the target language (T), and the
implementation language ()

The three language S, |, and T can be quite different. Such
a compiler is called cross-compiler

This is represented by a T-diagram as:

2

In textual form this can be represented as
ST

T-diagrams

Tombstone diagrams (T-diagrams) consist of a set of
“puzzle pieces” representing compilers and other
related language processing programs.

They are used to illustrate and reason about
transformations from a source language(left of T) to
a target language (right of T) realized in
an implementation language(bottom of T).

They are most commonly found in describing
complicated processes for bootstrapping, porting,
and self-compiling of compilers, interpreters,

and macro-processors.

T-diagrams were first introduced for describing
bootstrapping and cross-compiling compilers

Cross Compiler

« a compiler which generates target code for a
different machine from one on which the
compiler runs.

* A host language is a language in which the
compiler is written.

— T-diagram S

H

» Cross compilers are used very often in
practice.

Cross Compiler

» Across compiler is a compiler capable of creating
executable code for a platform other than the
one on which the compiler is running.

* For example, a compiler that runs on a Windows
/PC but generates code that runs on Android
Smartphone is a cross compiler.

e Many mini computers and microprocessors
compilers are implemented this way. They run on
a bigger machine and produce object code for the
smaller machine.

Note:

 \When T-diagrams are put together ,the
Implementation language of the putting T
must be the same as the source language of
the existing compiler and that the target
language of the existing compiler must be that
same as the implementation language of the
translated one.

Example:

e Suppose we write a cross compiler for a new
language L in Implementation language S to
generate code for machine N.

e If an existing compiler for S runs on machine M
and generates code for M.

e S0, It can be thought of as an equation:
LsN +SmM = LmN
Thus we get a compiler from L to N that runs on M.

Example

 For the advantage of bootstrapping to be realized
fully, a compliler has to be written in a language It
compiles.

« Suppose we write a compiler LLN, development take
place on machine M, where an existing compiler
LmM Is available for L.

S0, by cross compilation process, we obtain LvmN
LLN + LmM = LmN

Example...

 The compiler LLN can be compiled a second
time, this time using the generated cross
compiller,

LLN + LmN = LaN

* The result of the second compilation is a
compiler that runs on N and generates code
for N.

* Thus, using bootstrapping techniques, an
optimizing compiler can optimize itself.

v BUppose L NS o be developed on @ machine b
where Lyl 15 availsole

L ML N
LN L]
Ll MM
L

+ Lompiks L second me using he gensralsd
Cormpaler

L Ml |L I
'L uiN

Sootstrapping a Compiler:
the Complete picture

END of UNIT-1

