
COMPILER DESIGN

Motivation

• Why we study Compiler Design?
• What is the importance of Compiler?
• What is the objective of this course?

Reasons:
• Compilers provide an essential interface

between applications and architectures.
• Compilers embody a wide range of theoretical

techniques.
• Compiler construction teaches programming

and software engineering skills.
• It teaches you how real world applications are

designed.
• It brings you closer to the language to exploit

it.

Reasons:
• Compiler (a sophisticated program) bridges a

gap between the language chosen & a
computer architecture.

• Compiler improves software productivity by
hiding low level details while delivering
performance.

• Compiler provides techniques for developing
other programming tools, like error detection
tools.

• Program translation can be used to solve
other problems, like Binary translation

Isn’t it a solved problem?

• Machines have continued to change since
they have been invented.

Changes in Architecture Changes in Compilers

* New features present new problems
* Changing costs lead to different concerns
* Must re-engineer well known solutions

Program Execution

• Execution of a program written in HLL is
basically a 2-step process

1. The source program is compiled first i.e.
translated into the object program.

2. The resulting object program is loaded into
memory and executed.

Translator (computing)

• A translator or programming language
processor is a computer program that
performs the translation of a program written
in a given programming language into
a functionally equivalent program in another
computer language (the target language),
without losing the functional or logical
structure of the original code (the "essence"
of each program).

Translators
• Compilers, Interpreters and Assemblers are all

software programming tools that convert code
into another type of code, but each term has
specific meaning.

• All of the above work in some way towards
getting a high-level programming language
translated into machine code that the central
processing unit (CPU) can understand.

• It’s important to note that all translators,
compilers, interpreters and assemblers are
programs themselves.

Compilers
• Compilers convert high-level language code to machine

(object) code in one session.
• Compilers will report errors after compiling has finished.
• Compilers can take a while, because they have to translate

high-level code to lower-level machine language all at once
and then save the executable object code to memory.

• A compiler creates machine code that runs on a processor
with a specific Instruction Set Architecture (ISA), which is
processor-dependent.

• Compilers are also platform-dependent.
• A cross-compiler, however, can generate code for a

platform other than the one it runs on itself.
• Choosing a compiler , means that first you need to know

the ISA, operating system, and the programming language
that you plan to use.

Interpreters

• Another way to get code to run on your processor
is to use an interpreter, which is not the same as
a compiler.

• An interpreter translates code like a compiler but
reads the code and immediately executes on that
code, and therefore is initially faster than a
compiler.

• Thus, interpreters are often used in software
development tools as debugging tools, as they
can execute a single in of code at a time.

Compiler v/s Interpreter

• Compilers translate code all at once and the processor
then executes upon the machine language that the
compiler produced. If changes are made to the code
after compilation, the changed code will need to be
compiled and added to the compiled code (or perhaps
the entire program will need to be re-compiled.)

• But an interpreter, although skipping the step of
compilation of the entire program to start, is much
slower to execute than the same program that’s been
completely compiled.

• Interpreters, however, have usefulness in areas where
speed doesn’t matter (e.g., debugging and training)

Compiler v/s Interpreter
• Compilers often come as a package with other

tools, and each processor manufacturer will have
at least one compiler or a package of software
development tools (that includes a compiler).

• There are several types of interpreters: the
syntax-directed interpreter (i.e., the Abstract
Syntax Tree (AST) interpreter), bytecode
interpreter, and threaded interpreter Just-in-Time
(a kind of hybrid interpreter/compiler), and a few
others.

• Some examples of programming languages that
use interpreters are Python, Ruby, Perl, and PHP.

Compiler v/s Interpreter
• An interpreter, like a compiler, translates high-level

language into low-level machine language. The difference
lies in the way they read the source code or input.

• A compiler reads the whole source code at once, creates
tokens, checks semantics, generates intermediate code,
executes the whole program and may involve many passes.

• In contrast, an interpreter reads a statement from the
input, converts it to an intermediate code, executes it, then
takes the next statement in sequence.

• If an error occurs, an interpreter stops execution and
reports it.

• whereas a compiler reads the whole program even if it
encounters several errors.

Assemblers
• An assembler translates a program written in assembly

language into machine language and is effectively a
compiler for the assembly language.

• Assembly language is a low-level programming language.
An assembler converts assembly language code into
machine code (also known as object code), an even lower-
level language that the processor can directly understand.

• Assembly language is the next level up from machine code,
and is quite useful in extreme cases of debugging code to
determine exactly what’s going on in a problematic
execution. For instance, Sometimes compilers will
“optimize” code in unforeseen ways that affect outcomes
such that it’s necessary to carefully follow the step-by-step
action of the processor in assembly code,

• A preprocessor, generally considered as a part of
compiler, is a tool that produces input for
compilers. It deals with macro-processing(macro
expansion), file inclusion, etc.

• A compiler is a program that converts high-level
language to assembly language.

• An assembler translates assembly language
programs into machine code.

• The output of an assembler is called an object
file, which contains a combination of machine
instructions as well as the data required to place
these instructions in memory(relocatable).

• Linker is a computer program that links and
merges various object files together in order to
make an executable file. All these files might have
been compiled by separate assemblers. The
major task of a linker is to search and locate
referenced module/routines in a program and to
determine the memory location where these
codes will be loaded, making the program
instruction to have absolute references.

• Loader is a part of operating system and is
responsible for loading executable files into
memory and execute them. It calculates the size
of a program (instructions and data) and creates
memory space(absolute) for it. It initializes
various registers to initiate execution.

A detailed look
at the

internals of a compiler

Phases of Compiler

• The compilation process is a sequence of
various phases. Each phase takes input from
its previous stage, has its own representation
of source program, and feeds its output to the
next phase of the compiler. Let us understand
the phases of a compiler.

Phases of Compiler

Lexical Analysis (Scanner)

• The first phase of scanner works as a text
scanner. This phase scans the source code as a
stream of characters and converts it into
meaningful lexemes. Lexical analyzer
represents these lexemes in the form of
tokens as:

<token-name, attribute-value>

Lexical Analysis

Translation Overview - Lexical Analysis

Why LA is called Scanner?
• It is also called as scanner because in this phase the

complete source code is scanned and a source program
is broken into groups of (strings) sequence of
characters. These groups are called Tokens.

• It reads the source program one character at a time.
• Each token represents a sequence of characters that

can be treated as a single logical entity called Lexemes.
• e.g. const pi = 3.14 (Here pi is a lexeme for token id)
• A token describes a sequence of characters having

some meaning in the source program.
• Tokens can be: Identifiers, keywords, operators,

punctuation symbols, constants

Tasks performed by LA:
• Eliminates the comments & white spaces
• Correlates error messages with the source

program
• Replacing lexemes by tokens

i.e. Generate token stream

Syntax Analysis
(Hierarchical Analysis)

• The next phase is called the syntax analysis
or parsing. It takes the token produced by
lexical analysis as input and generates a parse
tree (or syntax tree). In this phase, token
arrangements are checked against the source
code grammar, i.e. the parser checks if the
expression made by the tokens is syntactically
correct.

The Parser has two functions:

1. It checks that the token appearing in its input
occurs in a pattern permitted by the
specification of the source language.

2. It make explicitly the hierarchical structure of
the incoming token stream.(Parse tree or
syntax tree)

Translation Overview - Syntax Analysis

Parsing(Syntax Analysis)

Semantic Analysis

• Semantic analysis checks whether the parse tree
constructed follows the rules of language.

• For example, assignment of values is between
compatible data types, and adding string to an
integer.

• Also, the semantic analyzer keeps track of
identifiers, their types and expressions; whether
identifiers are declared before use or not etc. The
semantic analyzer produces an annotated syntax
tree as an output.

Translation Overview - Semantic
Analysis

Semantic Analysis

Intermediate Code Generation

• After semantic analysis the compiler
generates an intermediate code of the source
code for the target machine.

• It is in between the high-level language and
the machine language.

• This intermediate code should be generated in
such a way that it makes it easier to be
translated into the target machine code.

Translation Overview - Intermediate
Code Generation

Intermediate Code Generation

Different Types of Intermediate Code

Code Optimization

• The next phase does code optimization of the
intermediate code. Optimization can be
assumed as something that removes
unnecessary code lines, and arranges the
sequence of statements in order to speed up
the program execution without wasting
resources (CPU, memory).

Translation Overview- Code
Optimization

Machine Independent Code
Optimization

Examples of Machine Independent
Optimization

Code Generation

• In this phase, the code generator takes the
optimized representation of the intermediate
code and maps it to the target machine language.

• The code generator translates the intermediate
code into a sequence of (generally) re-locatable
machine code. Sequence of instructions of
machine code performs the task as the
intermediate code would do.

Translation Overview- Code
Generation

Code Generation (Machine
Dependent)

Symbol Table

• It is a data-structure maintained throughout
all the phases of a compiler. All the identifier's
names along with their types are stored here.
The symbol table makes it easier for the
compiler to quickly search the identifier
record and retrieve it. The symbol table is also
used for scope management.

Error Handler

• Each phase can encounter error. However
after detecting an error, a phase must
somehow deal with the error, so that the
compilation can proceed, allowing further
errors in the source program to be detected.

• The errors are reported in the form of
message.

Compiler Architecture

• A compiler can broadly be divided into two
phases based on the way they compile.

Analysis Phase

• Known as the front-end of the compiler,
the analysis phase of the compiler reads the
source program, divides it into core parts and
then checks for lexical, grammar and syntax
errors. The analysis phase generates an
intermediate representation of the source
program and symbol table, which should be
fed to the Synthesis phase as input.

Synthesis Phase

• Known as the back-end of the compiler,
the synthesis phase generates the target
program with the help of intermediate source
code representation and symbol table.

Front End /Back End Model

• Front end consists of those phases that depends
mainly on source language and are largely
independent on the target machine.

• So it normally includes lexical and syntax analysis
,creation of symbol table, semantic analysis and
generation of intermediate code.

• A certain amount of code optimization can also
be done here.

• It also includes error handling that goes along
with each of these phases.

Front End /Back End Model

• The Back end includes those portion of a
compiler that depends on the target machine.

• In this we find code optimization and code
generation phase along with necessary error
handling and symbol table operations.

Advantages: Front End /Back End
Model

• 1. By Keeping the same front end & attaching
different back ends, one can produce a
compiler for same source language on
different machines.

• 2. By keeping different front ends and same
backend, one can compile several different
languages on the same machine.

Passes of Compiler

• In an implementation of a compiler, portions of
one or more phases are combined into a module
called as pass.

• A Pass reads the source program or output of
previous pass, makes the transformation and
write its output into an intermediate file, which
may then be read by a subsequent pass.

• Each pass communicate with other pass via
temporary file.

Passes of Compiler

• The structure of the source language and the
environment in which compiler operate, has a
strong effect on the number of passes.

• Based on which we have single pass compiler
and multi pass compiler.

Advantage of Single-pass compilers

• One-pass compilers are smaller and faster
than multi-pass compilers.

• This is in contrast to a multi-pass
compiler which converts the program into one
or more intermediate representations in steps
between source code and machine code, and
which reprocesses the entire compilation unit
in each sequential pass.

Advantage of Multi-pass compilers

• One-pass compilers are unable to generate as
efficient programs as multi-pass compilers due
to the limited scope of available information.

• Machine Independent: Since the multiple
passes include a modular structure, and the
code generation decoupled from the other
steps of the compiler, the passes can be
reused for different hardware/machines.

LEXICAL ANALYSIS
(Linear Analysis)

1.Lexical analysis is the first phase of a compiler.
2.The lexical analyzer works closely with the syntax
analyzer. It reads character streams from the source code,
checks for legal tokens, and passes the data to the syntax
analyzer when it demands.
3.If the lexical analyzer finds a token invalid, it generates an
error.

• Language: Computer languages are
considered as finite sets, and mathematically
set operations can be performed on them.
Finite languages can be described by means of
regular expressions.

• Regular Expressions : Regular expressions
have the capability to express finite languages
by defining a pattern for finite strings of
symbols. The grammar defined by regular
expressions is known as regular grammar. The
language defined by regular grammar is
known as regular language.

Operations

• Regular expression is an important notation for
specifying patterns. There are a number of algebraic
laws that are obeyed by regular expressions.

• The various operations on languages are:
• Union of two languages L and M is written as

L U M = {s | s is in L or s is in M}
• Concatenation of two languages L and M is written as

LM = {st | s is in L and t is in M}
• The Kleene Closure of a language L is written as

L* = Zero or more occurrence of language L.

Notations

If r and s are regular expressions denoting the
languages L(r) and L(s), then

• Union : (r)|(s) is a regular expression denoting
L(r) U L(s)

• Concatenation : (r)(s) is a regular expression
denoting L(r)L(s)

• Kleene closure : (r)* is a regular expression
denoting (L(r))*

• (r) is a regular expression denoting L(r)

Precedence and Associativity

• *, concatenation (.), and | (pipe sign) are left
associative

• * has the highest precedence
• Concatenation (.) has the second highest

precedence.
• | (pipe sign) has the lowest precedence of all.

If x is a regular expression, then:

• x* means zero or more occurrence of x.
i.e., it can generate { e, x, xx, xxx, xxxx, … }

• x+ means one or more occurrence of x.
i.e., it can generate { x, xx, xxx, xxxx … } or x.x*

• x? means at most one occurrence of x
i.e., it can generate either {x} or {e}.

Finite Automata

• Finite automata is a recognizer for regular
expressions.

• When a regular expression string is fed into
finite automata, it changes its state for each
literal.

• If the input string is successfully processed
and the automata reaches its final state, it is
accepted, i.e., the string just fed was said to
be a valid token of the language in hand.

The mathematical model of finite
automata consists of:

• Finite set of states (Q)
• Finite set of input symbols (Σ)
• One Start state (q0)
• Set of final states (qf)
• Transition function (δ)

The transition function (δ) maps the finite set
of state (Q) to a finite set of input symbols (Σ),
Q × Σ ➔ Q

Longest Match Rule

When the lexical analyzer read the source-
code, it scans the code letter by letter; and
when it encounters a whitespace, operator
symbol, or special symbols, it decides that a
word is completed.

For example:
int intvalue;

• While scanning both lexemes till ‘int’, the lexical
analyzer cannot determine whether it is a
keyword int or the initials of identifier int value.

• The Longest Match Rule states that the lexeme
scanned should be determined based on the
longest match among all the tokens available.

• The lexical analyzer also follows rule
priority where a reserved word, e.g., a keyword,
of a language is given priority over user input.

• That is, if the lexical analyzer finds a lexeme that
matches with any existing reserved word, it
should generate an error.

Lexical Analysis

• Tokens are specified using Regular Expressions
and are recognized by Finite Automata.

• R.E. is a notation used to describe the Tokens.
• F.A. is a mechanism used to recognize these

tokens in the input stream.
• Similarly CFG is particularly useful in

specifying the syntactic structure of a
language.

Thompson's construction

• Thompson's construction is an algorithm for
transforming a regular expression into an
equivalent nondeterministic finite
automaton (NFA). This NFA can be used
to match strings against the regular
expression.

• Hence, this algorithm is of practical interest,
since it can compile regular expressions into
NFAs.

The algorithm

The algorithm works recursively by splitting an
expression into its constituent subexpressions,
from which the NFA will be constructed using
a set of rules.

Rules

• The empty-expression ε is converted to

A symbol a of the input alphabet is converted to

Rules
N(s) and N(t) are the NFA of the sub expressions s and t, respectively.

• The union expression s|t is converted to

• State q goes via ε either to the initial state of N(s) or N(t). Their final
states become intermediate states of the whole NFA and merge via
two ε-transitions into the final state of the NFA.

Rules
N(s) and N(t) are the NFA of the sub expressions s and t, respectively.

• The concatenation expression st is converted to

• The initial state of N(s) is the initial state of the
whole NFA.

• The final state of N(s) becomes the initial state
of N(t).

• The final state of N(t) is the final state of the
whole NFA.

Rules
• The Kleene star expression s* is converted to

• An ε-transition connects initial and final state of the NFA
with the sub-NFA N(s) in between. Another ε-transition
from the inner final to the inner initial state of N(s) allows
for repetition of expression s according to the star operator.

• The parenthesized expression (s) is converted to N(s) itself.

Example :(ε|a*b)
using Thompson's construction

Subset Construction

How to compute €-Closure

• The €-closure function takes a state and returns
the set of states reachable from it based on (one
or more) € -transitions.

• Note that this will always include the state itself.
We should be able to get from a state to any state
in its € -closure without consuming any input.

• The function move takes a state and a character,
and returns the set of states reachable
by one transition on this character.

The Subset Construction Algorithm

• Create the start state of the DFA by taking the €-closure of
the start state of the NFA.

• Perform the following for the new DFA state:
For each possible input symbol:
– Apply move to the newly-created state and the input symbol;

this will return a set of states.
– Apply the € -closure to this set of states, possibly resulting in a

new set.
• This set of NFA states will be a single state in the DFA.
• Each time we generate a new DFA state, we must apply

step 2 to it. The process is complete when applying step 2
does not yield any new states.

• The finish states of the DFA are those which contain any of
the finish states of the NFA.

Minimization of DFA

Suppose there is a DFA , D < Q, ∑, q0, δ, F > which recognizes a
language L. Then the minimized DFA, D < Q’, ∑, q0, δ’, F’ > can be
constructed for language L as:

Step 1: We will divide Q (set of states) into two sets. One set will
contain all final states and other set will contain non-final states.
This partition is called P0.
Step 2: Initialize k = 1
Step 3: Find Pk by partitioning the different sets of Pk-1. In each set
of Pk-1, we will take all possible pair of states. If two states of a set
are distinguishable, we will split the sets into different sets in Pk.
Step 4: Stop when Pk = Pk-1 (No change in partition)
Step 5: All states of one set are merged into one. No. of states in
minimized DFA will be equal to no. of sets in Pk.

Input Buffering in Compiler Design

• To ensure that a right lexeme is found, one or
more characters have to be looked up beyond
the next lexeme.

• Hence a two-buffer scheme is introduced to
handle large look aheads safely.

• Techniques for speeding up the process of
lexical analyzer such as the use of sentinels to
mark the buffer end have been adopted.

There are three general approaches for the
implementation of a lexical analyzer:

• (i) By using a lexical-analyzer generator, such as lex
compiler to produce the lexical analyzer from a regular
expression based specification. In this, the generator
provides routines for reading and buffering the input.

• (ii) By writing the lexical analyzer in a conventional
systems-programming language, using I/O facilities of
that language to read the input.

• (iii) By writing the lexical analyzer in assembly language
and explicitly managing the reading of input.

Input Buffering in Compiler Design

• Because of large amount of time consumption
in moving characters, specialized buffering
techniques have been developed to reduce
the amount of overhead required to process
an input character.

• Fig shows the buffer pairs which are used to
hold the input data.

Scheme
• Consists of two buffers, each consists of N-character size

which are reloaded alternatively.
• N-Number of characters on one disk block, e.g., 4096.
• N characters are read from the input file to the buffer using

one system read command.
• eof is inserted at the end if the number of characters is less

than N.
Pointers
• Two pointers lexemeBegin and forward are maintained.
• lexeme Begin points to the beginning of the current lexeme

which is yet to be found.
• forward scans ahead until a match for a pattern is found.
• Once a lexeme is found, lexemebegin is set to the character

immediately after the lexeme which is just found
and forward is set to the character at its right end.

• Current lexeme is the set of characters between two
pointers.

Disadvantages of this scheme

• This scheme works well most of the time, but the
amount of lookahead is limited.

• This limited lookahead may make it impossible to
recognize tokens in situations where the distance
that the forward pointer must travel is more than
the length of the buffer.
(e.g.) DECLARE (ARGl, ARG2, . . . , ARGn) in PL/1
program;

• It cannot determine whether the DECLARE is a
keyword or an array name until the character that
follows the right parenthesis.

Sentinels

• In the previous scheme, each time when the forward
pointer is moved, a check is done to ensure that one half of
the buffer has not moved off. If it is done, then the other
half must be reloaded.

• Therefore the ends of the buffer halves require two tests
for each advance of the forward pointer.

Test 1: For end of buffer.
Test 2: To determine what character is read.
• The usage of sentinel reduces the two tests to one by

extending each buffer half to hold a sentinel character at
the end.

• The sentinel is a special character that cannot be part of
the source program. (eof character is used as sentinel).

Advantages

• Most of the time, It performs only one test to
see whether forward pointer points to an eof.
• Only when it reaches the end of the buffer half
or eof, it performs more tests.
• Since N input characters are encountered
between eofs, the average number of tests per
input character is very close to 1.

Syntactic Specification of a
Programming Language

• CFG
• Capabilities of CFG
• Derivations
• Parse Trees
• Ambiguity
• BNF Notation

Regular Expression limitation.….

• We have seen that a lexical analyzer can
identify tokens with the help of regular
expressions and pattern rules. But a lexical
analyzer cannot check the syntax of a given
sentence due to the limitations of the regular
expressions. Regular expressions cannot check
balancing tokens, such as parenthesis.
Therefore, CFG is a helpful tool in describing
the syntax of programming languages.

Context-Free Grammar

• CFG is a superset of Regular Grammar, as
depicted below:

• It implies that every Regular Grammar is also
context-free

• CFG is a helpful tool in describing the syntax of
programming languages.

The capabilities of CFG :

• Context free grammars are capable of describing most
of the syntax of programming language.

• Suitable grammars for expressions can often be
constructed using associatively & precedence
information.

• So, context free grammar are most useful in describing
nested structures such as balanced parentheses,
matching begin-end's, corresponding if-then-else's &
so on. These nested structures cannot be described by
regular expression.

• The following grammars the string, which serves the
language.

Derivation

• A derivation is basically a sequence of
production rules, in order to get the input
string.

• During parsing, we take two decisions for
some sentential form of input:
1.Deciding the non-terminal which is to be
replaced.
2.Deciding the production rule, by which, the
non-terminal will be replaced.

Derivation
To decide which non-terminal to be replaced with
production rule, we can have two options.

• Left-most Derivation: If the sentential form of an
input is scanned and replaced from left to right, it
is called left-most derivation. The sentential form
derived by the left-most derivation is called the
left-sentential form.

• Right-most Derivation: If we scan and replace the
input with production rules, from right to left, it is
known as right-most derivation. The sentential
form derived from the right-most derivation is
called the right-sentential form.

Example: Input string: id + id * id

• Production rules:
E → E + E
E → E * E
E → id
• The left-most derivation is:
E → E * E
E → E + E * E
E → id + E * E
E → id + id * E
E → id + id * id

Notice that the left-most side non-terminal is
always processed first.

Example: Input string: id + id * id

• Production rules:
E → E + E
E → E * E
E → id

• The right-most derivation is:
E → E + E
E → E + E * E
E → E + E * id
E → E + id * id
E → id + id * id

Parse Tree

• In a parse tree:
• All leaf nodes are terminals.
• All interior nodes are non-terminals.
• In-order traversal gives original input string.
• A parse tree depicts associativity and precedence

of operators.
• The deepest sub-tree is traversed first, therefore

the operator in that sub-tree gets precedence
over the operator which is in the parent nodes.

Parse Tree

• A parse tree is a graphical depiction of a
derivation.

• It is convenient to see how strings are derived
from the start symbol.

• The start symbol of the derivation becomes
the root of the parse tree.

E → id + id * id
We take the left-most derivation of

a + b * c

Ambiguity
• A grammar G is said to be ambiguous if it has

more than one parse tree (left or right
derivation) for at least one string.

Example: E → E + E E → E – E E → id
• For the string, id + id – id, the above grammar

generates two parse trees:

Ambiguity

• The language generated by an ambiguous
grammar is said to be inherently ambiguous.
Ambiguity in grammar is not good for a
compiler construction. No method can detect
and remove ambiguity automatically, but it
can be removed by either re-writing the whole
grammar without ambiguity, or by setting and
following associativity and precedence
constraints.

Associativity

• If an operand has operators on both sides, the
side on which the operator takes this operand
is decided by the associativity of those
operators. If the operation is left-associative,
then the operand will be taken by the left
operator or if the operation is right-
associative, the right operator will take the
operand.

Example
• Operations such as Addition, Multiplication,

Subtraction, and Division are left associative.
• If the expression contains: id op id op id
• it will be evaluated as: (id op id) op id
• For example, (id + id) + id
• Operations like Exponentiation are right

associative, i.e., the order of evaluation in the
same expression will be:

• id op (id op id)
• For example, id ^ (id ^ id)

Precedence

• If two different operators share a common
operand, the precedence of operators decides
which will take the operand.

• That is, 2+3*4 can have two different parse
trees, one corresponding to (2+3)*4 and
another corresponding to 2+(3*4).

• By setting precedence among operators, this
problem can be easily removed.

• These methods decrease the chances of
ambiguity in a language or its grammar.

BNF Notation
• One of the earliest forms of notation used for

describing the syntax of a programming
language was Backus-Naur Form (BNF).

• This is basically just a variant of a context-free
grammar, with the symbol ``::='' used in place
of “” to mean ``is defined as''.

• Additionally, non-terminals are usually written
in angle-brackets and terminals in quotes.

• For example, we could describe a block of
statements as:

• <block> ::=``BEGIN'' <opt-stats> ``END''.
• <opt-stats> ::= <stats-list> | € .
• <stats-list> ::= <statement >.
• <stats-list> ::= < statement> ``;'' <stats-list> .

Compiler Construction Tools

• These tools can be used to implement a compiler.
• These tools have been created fot the automatic

design of specific compiler components.
• These tools use specialized languages for

specifying & implementing the component.
• These tools hide the details of generation

algorithm & produce components that can be
easily integrated into the remainder of a
compiler.

Compiler Construction Tools

• Some commonly used compiler-construction
tools include:
1. Parser generators.
2. Scanner generators.
3. Syntax-directed translation engines.
4. Automatic code generators.
5. Data-flow analysis engines.
6. Compiler-construction toolkits.

• Scanner Generators
Input: Regular expression description of the tokens of a
language
Output: Lexical analyzers.

Scanner generator generates lexical analyzers from a
regular expression description of the tokens of a language.

• Parser Generators:
Input: Grammatical description of a programming language
Output: Syntax analyzers.

Parser generator takes the grammatical description of a
programming language and produces a syntax analyzer.

• Syntax-directed Translation Engines
Input: Parse tree.
Output: Intermediate code.

Syntax-directed translation engines produce collections
of routines that walk a parse tree and generates
intermediate code.

• Automatic Code Generators
Input: Intermediate language.
Output: Machine language.

Code-generator takes a collection of rules that define
the translation of each operation of the intermediate
language into the machine language for a target
machine.

• Data-flow Analysis Engines:
Data-flow analysis engine gathers
the information, that is, the values
transmitted from one part of a program to
each of the other parts. Data-flow analysis is a
key part of code optimization.

• Compiler Construction Toolkits
The toolkits provide integrated set of routines
for various phases of compiler. Compiler
construction toolkits provide an integrated set
of routines for construction of phases of
compiler.

• A compiler for a programming language is
often decomposed into two parts:

1. Read the source program & discover its
structure.

2. Process this structure

The task of discovering the source program
again is decomposed into subtasks:

1. Split the source file into Tokens(LEX)
2. Find the hierarchical structure of the

program(YACC)

LEX: A Lexical Analyzer Generator
Lex source is a table of regular expressions and
corresponding program fragments.

The table is translated to a program which reads an input
stream, copying it to an output stream and partitioning the
input into strings which match the given expressions.

As each such string is recognized, the corresponding
program fragment is executed.

The recognition of the expressions is performed by a
deterministic finite automaton generated by Lex.

The program fragments written by the user are executed in
the order in which the corresponding regular expressions
occur in the input stream.

FLEX: A Fast Scanner Generator
• flex is a tool for generating scanners.
• Programs which recognized lexical patterns in text, flex

reads the given input files, for a description of a
scanner to generate.

• The description is in the form of pairs of regular
expressions and C code, called rules.

• flex generates as output a C source file, `lex.yy.c', which
defines a routine `yylex()'.

• This file is compiled and linked with the `-lfl' library to
produce an executable.

• When the executable is run, it analyzes its input for
occurrences of the regular expressions. Whenever it
finds one, it executes the corresponding C code.

YACC: Yet Another Compiler Compiler

• Yacc provides a general tool for describing the
input to a computer program.

• The Yacc user specifies the structures of his input,
together with code to be invoked as each such
structure is recognized.

• Yacc turns such a specification into a subroutine
that handles the input process.

• it is convenient and appropriate to have most of
the flow of control in the user's application
handled by this subroutine.

Bison: The YACC-compatible Parser
Generator

• Bison is a general-purpose parser generator
that converts a grammar description for an
LALR(1) context-free grammar into a C
program to parse that grammar.

Semantic Action is a sequence of C- Statements.

Bootstrapping
• In computer science, bootstrapping is the

technique for producing a self-compiling
compiler - that is, using the facilities offered by a
language to compile itself is the essence of
bootstrapping.

• Even C compilers are written in C.
• The chicken and egg problem: If one needs to

compile a compiler for language X (written in
language X), there is the issue of how the first
compiler can be compiled.

• The T-diagram is a notation used to explain the
compiler bootstrap techniques.

T-diagrams
• Tombstone diagrams (T-diagrams) consist of a set of

“puzzle pieces” representing compilers and other
related language processing programs.

• They are used to illustrate and reason about
transformations from a source language(left of T) to
a target language (right of T) realized in
an implementation language(bottom of T).

• They are most commonly found in describing
complicated processes for bootstrapping, porting,
and self-compiling of compilers, interpreters,
and macro-processors.

• T-diagrams were first introduced for describing
bootstrapping and cross-compiling compilers

Cross Compiler

• A cross compiler is a compiler capable of creating
executable code for a platform other than the
one on which the compiler is running.

• For example, a compiler that runs on a Windows
7PC but generates code that runs on Android
Smartphone is a cross compiler.

• Many mini computers and microprocessors
compilers are implemented this way. They run on
a bigger machine and produce object code for the
smaller machine.

Note:

• When T-diagrams are put together ,the
implementation language of the putting T
must be the same as the source language of
the existing compiler and that the target
language of the existing compiler must be that
same as the implementation language of the
translated one.

Example:

• Suppose we write a cross compiler for a new
language L in implementation language S to
generate code for machine N.

• If an existing compiler for S runs on machine M
and generates code for M.

• So, it can be thought of as an equation:
LSN +SMM = LMN

Thus we get a compiler from L to N that runs on M.

Example
• For the advantage of bootstrapping to be realized

fully, a compiler has to be written in a language it
compiles.

• Suppose we write a compiler LLN, development take
place on machine M, where an existing compiler
LMM is available for L.

• So, by cross compilation process, we obtain LMN
LLN + LMM = LMN

Example…

• The compiler LLN can be compiled a second
time, this time using the generated cross
compiler,

LLN + LMN = LNN
• The result of the second compilation is a

compiler that runs on N and generates code
for N.

• Thus, using bootstrapping techniques, an
optimizing compiler can optimize itself.

END of UNIT-1

